Log in

Electrical and thermal conductivity enrichment by carbon nanotubes: a mini-review

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Due to their outstanding electrical and thermal properties, carbon nanotubes (CNTs) are used to enhance the electrical and thermal conductivity of other materials, such as polymers and fibers. Researchers proved that CNT/material hybrid or composite has higher conductance compared with materials without CNT. In this article, we reviewed the latest progress related to CNT-based material composites and their fabrication process in terms of conductivity improvements. The location and position of the deposited CNTs within the composite matrix play an essential role in device performance due to their anisotropic properties. Composite conductivity is directly proportional to the weight fraction of CNTs (wt.%) added to the composite. However, a higher density of CNTs could be costly and have unpredicted behavior when deposited randomly. CNT-to-CNT contact, orientation angle, and CNTs distribution within the composite play a significant role in achieving the target conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data available within the article.

References

  1. R.I. Rabady, D.S. Malkawi, Thermal conductivity enhancement of sodium thiosulfate pentahydrate by adding carbon nano-tubes/graphite nano-particles. J. Energy Storage 27, 101166 (2020). https://doi.org/10.1016/j.est.2019.101166

    Article  Google Scholar 

  2. A. Abdulhameed, N.Z.A. Wahab, M.N. Mohtar, M.N. Hamidon, S. Shafie, I.A. Halin, Methods and applications of electrical conductivity enhancement of materials using carbon nanotubes. J. Electron. Mater. 50, 3207–3221 (2021). https://doi.org/10.1007/s11664-021-08928-2

    Article  CAS  Google Scholar 

  3. A. Klemenz, L. Mayrhofer, B. Lenczowski, M. Moseler, Carbon nanotubes as fillers for composites with enhanced thermal conductivity. Phys. Rev. Mater. 5, 86001 (2021). https://doi.org/10.1103/PhysRevMaterials.5.086001

    Article  CAS  Google Scholar 

  4. M. Taufiq Musa, N. Shaari, S.K. Kamarudin, Carbon nanotube, graphene oxide and montmorillonite as conductive fillers in polymer electrolyte membrane for fuel cell: an overview. Int. J. Energy Res. 45, 1309–1346 (2021). https://doi.org/10.1002/er.5874

    Article  CAS  Google Scholar 

  5. X. Lu, Z. Chen, Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chem. Rev. 105, 3643–3696 (2005). https://doi.org/10.1021/cr030093d

    Article  CAS  Google Scholar 

  6. Ó. Zurrón-Cifuentes, R. Boyero-García, C. Hernández-García, L. Plaja, High harmonic generation in armchair carbon nanotubes. Opt. Express 28, 19760 (2020). https://doi.org/10.1364/oe.394714

    Article  CAS  Google Scholar 

  7. M.K. Niranjan, Theoretical investigation of electronic bandgaps of Semiconducting single-walled carbon nanotubes using semi-empirical self-consistent tight binding and ab-inito density functional methods. J. Phys. Commun. 4, 15004 (2020). https://doi.org/10.1088/2399-6528/ab62c0

    Article  CAS  Google Scholar 

  8. R. Shoukat, M.I. Khan, Carbon nanotubes: a review on properties, synthesis methods and applications in micro and nanotechnology. Microsyst. Technol. 27, 4183–4192 (2021). https://doi.org/10.1007/s00542-021-05211-6

    Article  CAS  Google Scholar 

  9. I. Karbovnyk, H. Klym, D. Chalyy, I. Zhydenko, D. Lukashevych, Impedance analysis of PEDOT:PSS/CNT composites below percolation threshold. Appl. Nanosci. 12, 1263–1266 (2022). https://doi.org/10.1007/s13204-021-01810-x

    Article  CAS  Google Scholar 

  10. Y.-Y. Wang, Song-Yang, W.-J. Sun, K. Dai, D.-X. Yan, Z.-M. Li, Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading. J. Mater. Sci. Technol. 102, 115–122 (2022). https://doi.org/10.1016/j.jmst.2021.06.032

    Article  CAS  Google Scholar 

  11. V. Zeighami, M. Jafari, Stress analysis of perforated composite plates reinforced with carbon nanotubes with different distributions. Emergent Mater. 4, 1711–1723 (2021). https://doi.org/10.1007/S42247-021-00191-9/METRICS

    Article  CAS  Google Scholar 

  12. Wang, Y.; Li, M.; Zhang, M.; Gu, Y.; Wang, S.; Li, Q.; Zhang, Z. The effects of irradiation modification on the floating carbon nanotube film. In Proceedings of the ICCM International Conferences on Composite Materials; 2017; Vol. 2017–Augus

  13. P.S. Samuel Ratna Kumar, P.M. Mashinini, R. Vaira Vignesh, Experimental and numerical investigation of multiwalled carbon nanotube/aluminosilicate reinforced aluminum hybrid surface composites using friction stir processing. Emergent Mater. 5, 1973–1983 (2022). https://doi.org/10.1007/S42247-022-00408-5/METRICS

    Article  Google Scholar 

  14. S.M. Jung, H.Y. Jung, J.S. Suh, Horizontally aligned carbon nanotube field emitters fabricated on ITO glass substrates. Carbon 46, 1973–1977 (2008). https://doi.org/10.1016/j.carbon.2008.08.012

    Article  CAS  Google Scholar 

  15. Y. Li, Y. Sun, J.T.W. Yeow, Nanotube field electron emission: principles, development, and applications. Nanotechnology 26, 242001 (2015). https://doi.org/10.1088/0957-4484/26/24/242001

    Article  CAS  Google Scholar 

  16. Y. Zhou, R. Azumi, Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci. Technol. Adv. Mater. 17, 493–516 (2016)

    Article  CAS  Google Scholar 

  17. E.M. Remillard, Q. Zhang, S. Sosina, Z. Branson, T. Dasgupta, C.D. Vecitis, Electric-field alignment of aqueous multi-walled carbon nanotubes on microporous substrates. Carbon 100, 578–589 (2016). https://doi.org/10.1016/j.carbon.2016.01.024

    Article  CAS  Google Scholar 

  18. Abid, P. Sehrawat, S.S. Islam, P. Gulati, M. Talib, P. Mishra, M. Khanuja, Development of highly sensitive optical sensor from carbon nanotube-alumina nanocomposite free-standing films: CNTs loading dependence sensor performance analysis. Sensors Actuators A: Physical 269, 62–69 (2018). https://doi.org/10.1016/J.SNA.2017.10.062

    Article  CAS  Google Scholar 

  19. A. Lekawa-Raus, T. Gizewski, J. Patmore, L. Kurzepa, K.K. Koziol, Electrical transport in carbon nanotube fibres. Scripta Mater. 131, 112–118 (2017). https://doi.org/10.1016/j.scriptamat.2016.11.027

    Article  CAS  Google Scholar 

  20. K.H. Baloch, N. Voskanian, J. Cumings, Controlling the thermal contact resistance of a carbon nanotube heat spreader. Appl. Phys. Lett. 97, 1–16 (2010). https://doi.org/10.1063/1.3478212

    Article  CAS  Google Scholar 

  21. A.S. El-Said, S. Rao, S. Akhmadaliev, S. Facsko, Tuning tailored single-walled carbon nanotubes by highly energetic heavy ions. Phys. Rev. Appl. 13, 44073 (2020). https://doi.org/10.1103/PhysRevApplied.13.044073

    Article  CAS  Google Scholar 

  22. B. Xu, R. Chen, J. Zhou, J. Liang, Recent progress and challenges regarding carbon nanotube on-chip interconnects. Micromachines 13, 1148 (2022). https://doi.org/10.3390/mi13071148

    Article  Google Scholar 

  23. J. Kim, Y. Oh, J. Shin, M. Yang, N. Shin, S. Shekhar, S. Hong, Nanoscale map** of carrier mobilities in the ballistic transports of carbon nanotube networks. ACS Nano 16, 21626–21635 (2022). https://doi.org/10.1021/ACSNANO.2C10715/SUPPL_FILE/NN2C10715_SI_001.PDF

    Article  CAS  Google Scholar 

  24. M. Dimaki, P. Bøggild, Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study. Nanotechnology 15, 1095–1102 (2004). https://doi.org/10.1088/0957-4484/15/8/039

    Article  CAS  Google Scholar 

  25. Barzic, A.I. Thermal and electrical transport in carbon nanotubes composites. In Carbon Nanotubes for a Green Environment; Apple Academic Press: Boca Raton, 2022; 209–232 ISBN 9781003277200.

  26. K.-S. Jang, H.Y. Yeom, J.W. Park, S.H. Lee, S.J. Lee, Morphology, electrical conductivity, and rheology of latex-based polymer/nanocarbon nanocomposites. Korea-Australia Rheology Journal 33, 357–366 (2021). https://doi.org/10.1007/s13367-021-0028-7

    Article  Google Scholar 

  27. C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005). https://doi.org/10.1021/nl051044e

    Article  CAS  Google Scholar 

  28. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006). https://doi.org/10.1021/nl052145f

    Article  CAS  Google Scholar 

  29. C.-W.W. Nan, Z. Shi, Y. Lin, A simple model for thermal conductivity of carbon nanotube-based composites. Chem. Phys. Lett. 375, 666–669 (2003). https://doi.org/10.1016/S0009-2614(03)00956-4

    Article  CAS  Google Scholar 

  30. S. Sinha, S. Barjami, G. Iannacchione, A. Schwab, G. Muench, Off-axis thermal properties of carbon nanotube films. J. Nanopart. Res. 7, 651–657 (2005). https://doi.org/10.1007/s11051-005-8382-9

    Article  CAS  Google Scholar 

  31. Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Progress in Polymer Science (Oxford) 36, 914–944 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.004

    Article  CAS  Google Scholar 

  32. H. Guo, T.V. Sreekumar, T. Liu, M. Minus, S. Kumar, Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films. Polymer 46, 3001–3005 (2005). https://doi.org/10.1016/j.polymer.2005.02.013

    Article  CAS  Google Scholar 

  33. C. Diao, Z. Yang, Y. Dong, Y. Duan, Ballistic-diffusive phonon transport and thermal rectification across single-molecule junctions. Int. J. Heat Mass Transfer 157, 119851 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119851

    Article  CAS  Google Scholar 

  34. A. Kumar, K. Sharma, A.R. Dixit, Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications. J. Mater. Sci. 55, 2682–2724 (2020). https://doi.org/10.1007/s10853-019-04196-y

    Article  CAS  Google Scholar 

  35. S. Gong, Z.H. Zhu, S.A. Meguid, Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes. Polymer 56, 498–506 (2015). https://doi.org/10.1016/j.polymer.2014.11.038

    Article  CAS  Google Scholar 

  36. A.I. Oliva-Avilés, F. Avilés, V. Sosa, A.I. Oliva, F. Gamboa, Dynamics of carbon nanotube alignment by electric fields. Nanotechnology 23, 465710 (2012). https://doi.org/10.1088/0957-4484/23/46/465710

    Article  CAS  Google Scholar 

  37. E.C. Sengezer, G.D. Seidel, R.J. Bodnar, Anisotropic piezoresistivity characteristics of aligned carbon nanotube-polymer nanocomposites. Smart Mater. Struct. 26, 95027 (2017). https://doi.org/10.1088/1361-665X/aa78c3

    Article  Google Scholar 

  38. P. Gupta, M. Rajput, N. Singla, V. Kumar, D. Lahiri, Electric field and current assisted alignment of CNT inside polymer matrix and its effects on electrical and mechanical properties. Polymer 89, 119–127 (2016). https://doi.org/10.1016/j.polymer.2016.02.025

    Article  CAS  Google Scholar 

  39. A. Kausar, Self-healing polymer/carbon nanotube nanocomposite: a review. J. Plast. Film Sheeting 37, 160–181 (2021). https://doi.org/10.1177/8756087920960195

    Article  CAS  Google Scholar 

  40. B.V. Basheer, J.J. George, S. Siengchin, J. Parameswaranpillai, Polymer grafted carbon nanotubes—synthesis, properties, and applications: a review. Nano-Struct. Nano-Objects 22, 100429 (2020). https://doi.org/10.1016/j.nanoso.2020.100429

    Article  CAS  Google Scholar 

  41. S. Song, Q. Li, C. Zhang, Z. Liu, X. Fan, Y. Zhang, Balanced Strength-toughness, thermal conductivity and self-cleaning properties of PMMA composites enabled by terpolymer grafted carbon nanotube. Nanotechnology 32, 195709 (2021). https://doi.org/10.1088/1361-6528/abe2ca

    Article  CAS  Google Scholar 

  42. M. Mu, T. McNally, The effect of multi-walled carbon nanotubes on the thermo-physical properties of shape stabilised phase change materials for buildings based on high density polyethylene and paraffin wax. J. Energy Storage 55, 105601 (2022). https://doi.org/10.1016/j.est.2022.105601

    Article  Google Scholar 

  43. J.A. King, R.L. Barton, R.A. Hauser, J.M. Keith, Synergistic effects of carbon fillers in electrically and thermally conductive liquid crystal polymer based resins. Polym. Compos. 29, 421–428 (2008). https://doi.org/10.1002/pc.20446

    Article  CAS  Google Scholar 

  44. H. Tu, L. Ye, Thermal conductive PS/graphite composites. Polym. Adv. Technol. 20, 21–27 (2009). https://doi.org/10.1002/pat.1236

    Article  CAS  Google Scholar 

  45. F. Casamento, E. Padovano, S. Pappalardo, A. Frache, C. Badini, Development of polypropylene-based composites through fused filament fabrication: the effect of carbon-based fillers. Composites Part A: Appl. Sci. Manuf. 164, 107308 (2023). https://doi.org/10.1016/j.compositesa.2022.107308

    Article  CAS  Google Scholar 

  46. S.-J. Li, J.-C. Zhang, J. Li, H.-Y. Yang, J.-J. Meng, B. Zhang, A 3D sandwich structured hybrid of gold nanoparticles decorated MnO 2 /graphene-carbon nanotubes as high performance H 2 O 2 sensors. Sens. Actuators, B Chem. 260, 1–11 (2018). https://doi.org/10.1016/j.snb.2017.12.184

    Article  CAS  Google Scholar 

  47. J. Liu, A. Rasheed, M.L. Minus, S. Kumar, Processing and properties of carbon nanotube/poly(methyl methacrylate) composite films. J. Appl. Polym. Sci. 112, 142–156 (2009). https://doi.org/10.1002/app.29372

    Article  CAS  Google Scholar 

  48. T.N. Abraham, D. Ratna, S. Siengchin, J. Karger-Kocsis, Rheological and thermal properties of poly(ethylene oxide)/multiwall carbon nanotube composites. J. Appl. Polym. Sci. 110, 2094–2101 (2008). https://doi.org/10.1002/app.28773

    Article  CAS  Google Scholar 

  49. S.I. Moon, F. **, C.J. Lee, S. Tsutsumi, S.H. Hyon, Novel carbon nanotube/poly(L-lactic acid) nanocomposites; their modulus, thermal stability, and electrical conductivity. Macromol. Symp. 224, 287–296 (2005). https://doi.org/10.1002/masy.200550625

    Article  CAS  Google Scholar 

  50. R. Srivastava, S. Banerjee, D. Jehnichen, B. Voit, F. Böhme, In situ preparation of polyimide composites based on functionalized carbon nanotubes. Macromol. Mater. Eng. 294, 96–102 (2009). https://doi.org/10.1002/mame.200800241

    Article  CAS  Google Scholar 

  51. D.K. Kim, K.W. Oh, S.H. Kim, Synthesis of polyaniline/multiwall carbon nanotube composite via inverse emulsion polymerization. J. Polym. Sci., Part B: Polym. Phys. 46, 2255–2266 (2008). https://doi.org/10.1002/polb.21557

    Article  CAS  Google Scholar 

  52. N.G. Sahoo, Y.C. Jung, H.H. So, J.W. Cho, Polypyrrole coated carbon nanotubes: synthesis, characterization, and enhanced electrical properties. Synth. Met. 157, 374–379 (2007). https://doi.org/10.1016/j.synthmet.2007.04.006

    Article  CAS  Google Scholar 

  53. J.T. Illakkiya, P.U. Rajalakshmi, R. Oommen, Synthesis and characterization of transparent conducting SWCNT/PEDOT: PSS composite films by spin coating technique. Optik 157, 435–440 (2018). https://doi.org/10.1016/j.ijleo.2017.10.174

    Article  CAS  Google Scholar 

  54. C.W. Chang-Jian, E.C. Cho, K.C. Lee, J.H. Huang, P.Y. Chen, B.C. Ho, Y.S. Hsiao, Thermally conductive polymeric composites incorporating 3D MWCNT/PEDOT:PSS scaffolds. Compos. B Eng. 136, 46–54 (2018). https://doi.org/10.1016/j.compositesb.2017.10.004

    Article  CAS  Google Scholar 

  55. L. Tzounis, M. Hegde, M. Liebscher, T. Dingemans, P. Pötschke, A.S. Paipetis, N.E. Zafeiropoulos, M. Stamm, All-aromatic SWCNT-polyetherimide nanocomposites for thermal energy harvesting applications. Compos. Sci. Technol. 156, 158–165 (2018). https://doi.org/10.1016/j.compscitech.2017.12.030

    Article  CAS  Google Scholar 

  56. S.G. Prolongo, A.D. Printz, N. Rolston, B.L. Watson, R.H. Dauskardt, Poly(triarylamine) composites with carbon nanomaterials for highly transparent and conductive coatings. Thin Solid Films 646, 61–66 (2018). https://doi.org/10.1016/j.tsf.2017.11.025

    Article  CAS  Google Scholar 

  57. S.A. Hashemi, S.M. Mousavi, M. Arjmand, N. Yan, U. Sundararaj, Electrified single-walled carbon nanotube/epoxy nanocomposite via vacuum shock technique: effect of alignment on electrical conductivity and electromagnetic interference shielding. Polym. Compos. 39, E1139–E1148 (2018). https://doi.org/10.1002/pc.24632

    Article  CAS  Google Scholar 

  58. P. Rivière, T.E. Nypelö, M. Obersriebnig, H. Bock, M. Müller, N. Mundigler, R. Wimmer, Unmodified multi-wall carbon nanotubes in polylactic acid for electrically conductive injection-moulded composites. J. Thermoplast. Compos. Mater. 30, 1615–1638 (2017). https://doi.org/10.1177/0892705716649651

    Article  CAS  Google Scholar 

  59. C. Ji, C. Yan, Y. Wang, S. **ong, F. Zhou, Y. Li, R. Sun, C.P. Wong, Thermal conductivity enhancement of CNT/MoS2/graphene−epoxy nanocomposites based on structural synergistic effects and interpenetrating network. Compos. B Eng. 163, 363–370 (2019). https://doi.org/10.1016/j.compositesb.2018.11.005

    Article  CAS  Google Scholar 

  60. M. He, L. Yang, W. Lin, J. Chen, X. Mao, Z. Ma, Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J. Energy Storage 25, 100874 (2019). https://doi.org/10.1016/j.est.2019.100874

    Article  Google Scholar 

  61. Y. Wang, J. Bailey, Y. Zhu, Y. Zhang, S.K.S. Boetcher, Y. Li, C. Wu, Application of carbon nanotube prepared from waste plastic to phase change materials: the potential for battery thermal management. Waste Manage. 154, 96–104 (2022). https://doi.org/10.1016/j.wasman.2022.10.003

    Article  CAS  Google Scholar 

  62. Z. Liu, Z. Chen, F. Yu, Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler. Sol. Energy Mater. Sol. Cells 192, 72–80 (2019). https://doi.org/10.1016/j.solmat.2018.12.014

    Article  CAS  Google Scholar 

  63. Y. Chen, Q. Zhang, X. Wen, H. Yin, J. Liu, A novel CNT encapsulated phase change material with enhanced thermal conductivity and photo-thermal conversion performance. Sol. Energy Mater. Sol. Cells 184, 82–90 (2018). https://doi.org/10.1016/j.solmat.2018.04.034

    Article  CAS  Google Scholar 

  64. C. Silvestri, M. Riccio, R.H. Poelma, A. Jovic, B. Morana, S. Vollebregt, A. Irace, G.Q. Zhang, P.M. Sarro, Effects of conformal nanoscale coatings on thermal performance of vertically aligned carbon nanotubes. Small 14, 1800614 (2018). https://doi.org/10.1002/smll.201800614

    Article  CAS  Google Scholar 

  65. S. Wang, C. An, J. Wang, B. Ye, Reduce the sensitivity of CL-20 by improving thermal conductivity through carbon nanomaterials. Nanoscale Res. Lett. 13, 85 (2018). https://doi.org/10.1186/s11671-018-2496-3

    Article  CAS  Google Scholar 

  66. A. **e, Y. Wang, P. Jiang, S. Li, X. Huang, Nondestructive functionalization of carbon nanotubes by combining mussel-inspired chemistry and RAFT polymerization: towards high dielectric nanocomposites with improved thermal management capability. Compos. Sci. Technol. 154, 154–164 (2018). https://doi.org/10.1016/j.compscitech.2017.11.022

    Article  CAS  Google Scholar 

  67. C. Du, M. Li, M. Cao, S. Feng, H. Guo, B. Li, Enhanced thermal and mechanical properties of polyvinlydene fluoride composites with magnetic oriented carbon nanotube. Carbon 126, 197–207 (2018). https://doi.org/10.1016/j.carbon.2017.10.027

    Article  CAS  Google Scholar 

  68. P. Szatkowski, K. Pielichowska, S. Blazewicz, Mechanical and thermal properties of carbon-nanotube-reinforced self-healing polyurethanes. J. Mater. Sci. 52, 12221–12234 (2017). https://doi.org/10.1007/s10853-017-1353-6

    Article  CAS  Google Scholar 

  69. J. Che, K. Wu, Y. Lin, K. Wang, Q. Fu, Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy. Compos. A Appl. Sci. Manuf. 99, 32–40 (2017). https://doi.org/10.1016/j.compositesa.2017.04.001

    Article  CAS  Google Scholar 

  70. S. Pan, B. Wu, G. Qian, J. Zhang, Z. Zheng, R. **a, J. Qian, Enhanced thermal conductivity with ultralow filler loading via constructing branch-type heat transfer network. Compos. Commun. 30, 101060 (2022). https://doi.org/10.1016/j.coco.2022.101060

    Article  Google Scholar 

  71. W. Gao, N. Komatsu, L.W. Taylor, G.V. Naik, K. Yanagi, M. Pasquali, J. Kono, Macroscopically aligned carbon nanotubes for flexible and high-temperature electronics, optoelectronics, and thermoelectrics. J. Phys. D Appl. Phys. 53, 63001 (2020). https://doi.org/10.1088/1361-6463/ab4ca4

    Article  CAS  Google Scholar 

  72. G. Wang, S.-K. Kim, M.C. Wang, T. Zhai, S. Munukutla, G.S. Girolami, P.J. Sempsrott, S. Nam, P.V. Braun, J.W. Lyding, Enhanced electrical and mechanical properties of chemically cross-linked carbon-nanotube-based fibers and their application in high-performance supercapacitors. ACS Nano 14, 632–639 (2020). https://doi.org/10.1021/acsnano.9b07244

    Article  CAS  Google Scholar 

  73. X. Lepró, C. Aracne-Ruddle, D. Malone, H. Hamza, E. Schaible, S.F. Buchsbaum, A. Calonico-Soto, J. Bigelow, E. Meshot, S. Baxamusa et al., Liquid-free covalent reinforcement of carbon nanotube dry-spun yarns and free-standing sheets. Carbon 187, 415–424 (2022). https://doi.org/10.1016/j.carbon.2021.11.012

    Article  CAS  Google Scholar 

  74. P. Liu, D.C.M. Hu, T.Q. Tran, D. Jewell, H.M. Duong, Electrical property enhancement of carbon nanotube fibers from post treatments. Colloids Surf., A 509, 384–389 (2016). https://doi.org/10.1016/j.colsurfa.2016.09.036

    Article  CAS  Google Scholar 

  75. Y. Shang, Y. Wang, S. Li, C. Hua, M. Zou, A. Cao, High-strength carbon nanotube fibers by twist-induced self-strengthening. Carbon 119, 47–55 (2017). https://doi.org/10.1016/j.carbon.2017.03.101

    Article  CAS  Google Scholar 

  76. J. **ao, B. Liu, Y. Huang, J. Zuo, K.C. Hwang, M.F. Yu, Collapse and stability of single- and multi-wall carbon nanotubes. Nanotechnology 18, 395703 (2007). https://doi.org/10.1088/0957-4484/18/39/395703

    Article  CAS  Google Scholar 

  77. K. Chu, D. Kim, Y. Sohn, S. Lee, C. Moon, S. Park, Electrical and thermal properties of carbon-nanotube composite for flexible electric heating-unit applications. IEEE Electron Device Lett. 34, 668–670 (2013). https://doi.org/10.1109/LED.2013.2249493

    Article  CAS  Google Scholar 

  78. H. Ye, K. Wang, J. Zhou, L. Song, L. Gu, X. Cao, A true cable assembly with a carbon nanotube sheath and nickel wire core: a fully flexible electrode integrating energy storage and electrical conduction. J. Mater. Chem. A 6, 1109–1118 (2018). https://doi.org/10.1039/c7ta08758f

    Article  CAS  Google Scholar 

  79. P.M. Hannula, A. Peltonen, J. Aromaa, D. Janas, M. Lundström, B.P. Wilson, K. Koziol, O. Forsén, Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers. Carbon 107, 281–287 (2016). https://doi.org/10.1016/j.carbon.2016.06.008

    Article  CAS  Google Scholar 

  80. A. Morelos-Gómez, M. Fujishige, S. Magdalena Vega-Díaz, I. Ito, T. Fukuyo, R. Cruz-Silva, F. Tristán-López, K. Fujisawa, T. Fujimori, R. Futamura et al., High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide treatments. J. Mater. Chem. A 4, 74–82 (2015). https://doi.org/10.1039/c5ta06662j

    Article  Google Scholar 

  81. J. Alvarenga, P.R. Jarosz, C.M. Schauerman, B.T. Moses, B.J. Landi, C.D. Cress, R.P. Raffaelle, High conductivity carbon nanotube wires from radial densification and ionic do**. Appl. Phys. Lett. 97, 2–4 (2010). https://doi.org/10.1063/1.3506703

    Article  CAS  Google Scholar 

  82. X. Liang, Y. Gao, J. Duan, Z. Liu, S. Fang, R.H. Baughman, L. Jiang, Q. Cheng, Enhancing the strength, toughness, and electrical conductivity of twist-spun carbon nanotube yarns by π bridging. Carbon 150, 268–274 (2019). https://doi.org/10.1016/j.carbon.2019.05.023

    Article  CAS  Google Scholar 

  83. N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, E.A. Bengio, R.F. Ter Waarbeek, J.J. De Jong, R.E. Hoogerwerf et al., Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339, 182–186 (2013). https://doi.org/10.1126/science.1228061

    Article  CAS  Google Scholar 

  84. T. Chen, Z. Cai, L. Qiu, H. Li, J. Ren, H. Lin, Z. Yang, X. Sun, H. Peng, Synthesis of aligned carbon nanotube composite fibers with high performances by electrochemical deposition. J. Mater. Chem. A 1, 2211–2216 (2013). https://doi.org/10.1039/c2ta01039a

    Article  CAS  Google Scholar 

  85. M.A. Zhilyaeva, E.V. Shulga, S.D. Shandakov, I.V. Sergeichev, E.P. Gilshteyn, A.S. Anisimov, A.G. Nasibulin, A novel straightforward wet pulling technique to fabricate carbon nanotube fibers. Carbon 150, 69–75 (2019). https://doi.org/10.1016/j.carbon.2019.04.111

    Article  CAS  Google Scholar 

  86. D. Mesguich, C. Arnaud, F. Lecouturier, N. Ferreira, G. Chevallier, C. Estournès, A. Weibel, C. Josse, C. Laurent, High strength-high conductivity carbon nanotube-copper wires with bimodal grain size distribution by spark plasma sintering and wire-drawing. Scripta Mater. 137, 78–82 (2017). https://doi.org/10.1016/j.scriptamat.2017.05.008

    Article  CAS  Google Scholar 

  87. J.N. Wang, X.G. Luo, T. Wu, Y. Chen, High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun. 5, 1–8 (2014). https://doi.org/10.1038/ncomms4848

    Article  CAS  Google Scholar 

  88. G. Xu, J. Zhao, S. Li, X. Zhang, Z. Yong, Q. Li, Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers. Nanoscale 3, 4215–4219 (2011). https://doi.org/10.1039/c1nr10571j

    Article  CAS  Google Scholar 

  89. Z. He, J.H. Byun, G. Zhou, B.J. Park, T.H. Kim, S.B. Lee, J.W. Yi, M.K. Um, T.W. Chou, Effect of MWCNT content on the mechanical and strain-sensing performance of thermoplastic polyurethane composite fibers. Carbon 146, 701–708 (2019). https://doi.org/10.1016/j.carbon.2019.02.060

    Article  CAS  Google Scholar 

  90. R.M. Sundaram, A.H. Windle, One-step purification of direct-spun CNT fibers by post-production sonication. Mater. Des. 126, 85–90 (2017). https://doi.org/10.1016/j.matdes.2017.04.011

    Article  CAS  Google Scholar 

  91. A.P. Leggiero, K.J. Trettner, H.L. Ursino, D.J. McIntyre, M. Schauer, E. Zeira, C.D. Cress, B.J. Landi, High conductivity copper-carbon nanotube hybrids via site-specific chemical vapor deposition. ACS Appl. Nano Mater. 2, 118–126 (2019). https://doi.org/10.1021/acsanm.8b01740

    Article  CAS  Google Scholar 

  92. A.R. Bucossi, C.D. Cress, C.M. Schauerman, J.E. Rossi, I. Puchades, B.J. Landi, Enhanced electrical conductivity in extruded single-wall carbon nanotube wires from modified coagulation parameters and mechanical processing. ACS Appl. Mater. Interfaces. 7, 27299–27305 (2015). https://doi.org/10.1021/acsami.5b08668

    Article  CAS  Google Scholar 

  93. L. Qiu, H. Zou, X. Wang, Y. Feng, X. Zhang, J. Zhao, X. Zhang, Q. Li, Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon 141, 497–505 (2019). https://doi.org/10.1016/j.carbon.2018.09.073

    Article  CAS  Google Scholar 

  94. H. Komatsu, T. Matsunami, Y. Sugita, T. Ikuno, Direct formation of carbon nanotube wiring with controlled electrical resistance on plastic films. Sci. Rep. 13, 2254 (2023). https://doi.org/10.1038/s41598-023-29578-w

    Article  CAS  Google Scholar 

  95. B. Goh, K.J. Kim, C.-L. Park, E.S. Kim, S.H. Kim, J. Choi, In-plane thermal conductivity of multi-walled carbon nanotube yarns under mechanical loading. Carbon 184, 452–462 (2021). https://doi.org/10.1016/j.carbon.2021.08.047

    Article  CAS  Google Scholar 

  96. Y. Cho, N. Okamoto, S. Yamamoto, S. Obokata, K. Nishioka, H. Benten, M. Nakamura, Carbon nanotube/biomolecule composite yarn for wearable thermoelectric applications. ACS Appl. Energy Mater. 5, 3698–3705 (2022). https://doi.org/10.1021/acsaem.2c00142

    Article  CAS  Google Scholar 

  97. P. Liu, Z. Fan, A. Mikhalchan, T.Q. Tran, D. Jewell, H.M. Duong, A.M. Marconnet, Continuous carbon nanotube-based fibers and films for applications requiring enhanced heat dissipation. ACS Appl. Mater. Interfaces. 8, 17461–17471 (2016). https://doi.org/10.1021/acsami.6b04114

    Article  CAS  Google Scholar 

  98. M.V. Il’ina, O.I. Il’in, Y.F. Blinov, A.A. Konshin, B.G. Konoplev, O.A. Ageev, M. Il’ina, O. Il’in, Y.F. Blinov, A.A. Konshin et al., Piezoelectric response of multi-walled carbon nanotubes. Materials 11, 638 (2018). https://doi.org/10.3390/ma11040638

    Article  CAS  Google Scholar 

  99. B.A. Selim, L.W. Zhang, K.M. Liew, Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy’s higher-order shear deformation theory. Compos. Struct. 163, 350–364 (2017). https://doi.org/10.1016/J.COMPSTRUCT.2016.11.011

    Article  Google Scholar 

  100. J. Lim, Flexible piezoelectric generators by using the bending motion method of direct-grown-PZT nanoparticles on carbon nanotubes. Nanomaterials 7, 308 (2017). https://doi.org/10.3390/nano7100308

    Article  CAS  Google Scholar 

  101. Z.-H. Lin, Y. Yang, J.M. Wu, Y. Liu, F. Zhang, Z.L. Wang, BaTiO 3 Nanotubes-based flexible and transparent nanogenerators. J. Phys. Chem. Lett. 3, 3599–3604 (2012). https://doi.org/10.1021/jz301805f

    Article  CAS  Google Scholar 

  102. Y.-T. Lim, P.-K. Shin, Piezoelectric nanogenerator device based on hybrid active layer of ZnO-nanowires/PVDF-CNT. J. Comput. Theor. Nanosci. 12, 847–851 (2015). https://doi.org/10.1166/jctn.2015.3815

    Article  CAS  Google Scholar 

  103. H. Mao, M. Qiu, X. Chen, H. Verweij, Y. Fan, Fabrication and in-situ fouling mitigation of a supported carbon nanotube/γ-alumina ultrafiltration membrane. J. Membr. Sci. 550, 26–35 (2018). https://doi.org/10.1016/J.MEMSCI.2017.12.050

    Article  CAS  Google Scholar 

  104. M. Toader, R. Schubel, M. Hartmann, L. Scharfenberg, R. Jordan, M. Mertig, S.E. Schulz, T. Gessner, S. Hermann, Enhancement of carbon nanotube FET performance via direct synthesis of poly (sodium 4-styrenesulfonate) in the transistor channel. Chem. Phys. Lett. 661, 1–5 (2016). https://doi.org/10.1016/j.cplett.2016.07.049

    Article  CAS  Google Scholar 

  105. D. Li, C. Wang, G. Sun, S. Senapati, H.C. Chang, A shear-enhanced CNT-assembly nanosensor platform for ultra-sensitive and selective protein detection. Biosens. Bioelectron. 97, 143–149 (2017). https://doi.org/10.1016/j.bios.2017.05.053

    Article  CAS  Google Scholar 

  106. A.N. Omrani, E. Esmaeilzadeh, M. Jafari, A. Behzadmehr, Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diam. Relat. Mater. 93, 96–104 (2019). https://doi.org/10.1016/j.diamond.2019.02.002

    Article  CAS  Google Scholar 

  107. X. He, W. Gao, L. **e, B. Li, Q. Zhang, S. Lei, J.M. Robinson, E.H. Hroz, S.K. Doorn, W. Wang et al., Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol. 11, 633–638 (2016). https://doi.org/10.1038/nnano.2016.44

    Article  CAS  Google Scholar 

  108. J. Abot, M. Góngora-Rubio, J. Anike, C. Kiyono, L.A.M. Mello, V. Cardoso, R.L.S. Rosa, D. Kuebler, G. Brodeur, A. Alotaibi et al., Foil strain gauges using piezoresistive carbon nanotube yarn: fabrication and calibration. Sensors 18, 464 (2018). https://doi.org/10.3390/s18020464

    Article  CAS  Google Scholar 

  109. H.J. Kim, Y.J. Kim, High performance flexible piezoelectric pressure sensor based on CNTs-doped 0–3 ceramic-epoxy nanocomposites. Mater. Des. 151, 133–140 (2018). https://doi.org/10.1016/j.matdes.2018.04.048

    Article  CAS  Google Scholar 

  110. Ganguli, S.; Shenogin, S.; Varshney, V.; Roy, A.K. Hybrid nanomaterials for flexible electronics interconnects. In Proceedings of the Conference Proceedings of the Society for Experimental Mechanics Series; Springer, Cham, 2018; (5) 61–63

  111. F. Schütt, S. Signetti, H. Krüger, S. Röder, D. Smazna, S. Kaps, S.N. Gorb, Y.K. Mishra, N.M. Pugno, R. Adelung, Hierarchical self-entangled carbon nanotube tube networks. Nat. Commun. 8, 1–10 (2017). https://doi.org/10.1038/s41467-017-01324-7

    Article  CAS  Google Scholar 

  112. S. Azhari, A. Termeh Yousefi, H. Tanaka, A. Khajeh, N. Kuredemus, M. Mansouri Bigdeli, M.N. Hamidon, Fabrication of piezoresistive based pressure sensor via purified and functionalized CNTs/PDMS nanocomposite: toward development of haptic sensors. Sens. Actuators, A 266, 158–165 (2017). https://doi.org/10.1016/j.sna.2017.09.026

    Article  CAS  Google Scholar 

  113. J. Li, H. Sun, S.Q. Yi, K.K. Zou, D. Zhang, G.J. Zhong, D.X. Yan, Z.M. Li, Flexible polydimethylsiloxane composite with multi-scale conductive network for ultra-strong electromagnetic interference protection. Nano-Micro Letters 15, 1–14 (2023). https://doi.org/10.1007/S40820-022-00990-7/FIGURES/5

    Article  CAS  Google Scholar 

  114. C. **, Q. Wu, G. Yang, H. Zhang, Y. Zhong, Investigation on hybrid nanofluids based on carbon nanotubes filled with metal nanoparticles: stability, thermal conductivity, and viscosity. Powder Technol. 389, 1–10 (2021). https://doi.org/10.1016/j.powtec.2021.05.007

    Article  CAS  Google Scholar 

  115. X. Chen, Y. Wang, S. Zhang, J. Cui, X. Ma, L. Tian, M. Li, C. Bao, Q. Wei, B. Du, 3D printing of graphene oxide/carbon nanotubes hydrogel circuits for multifunctional fire alarm and protection. Polymer Testing 119, 107905 (2023). https://doi.org/10.1016/j.polymertesting.2022.107905

    Article  CAS  Google Scholar 

  116. S. Muhammad Imran, G.-M. Go, M. Hussain, M.A. Al-Harthi, Multiwalled carbon nanotube-coated poly-methyl methacrylate dispersed thermoplastic polyurethane composites for pressure-sensitive applications. Macromol 2, 211–224 (2022). https://doi.org/10.3390/macromol2020014

    Article  CAS  Google Scholar 

  117. K. Pan, Q. Liu, Y. Lu, W. Wei, Z. Ding, S. Wang, Y. Zhou, High-throughput data mined prediction of design and preparation of flexible carbon-based conductive materials in energy storage. Ceram. Int. 49, 736–744 (2023). https://doi.org/10.1016/j.ceramint.2022.09.045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledged support from Fundamental Research Grant Scheme with Project Code: FRGS/1/2020/STG07/USM/02/10, by Ministry of Higher Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdullah Abdulhameed or Mohd Mahadi Halim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulhameed, A., Halim, M.M. Electrical and thermal conductivity enrichment by carbon nanotubes: a mini-review. emergent mater. 6, 841–852 (2023). https://doi.org/10.1007/s42247-023-00499-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00499-8

Keywords

Navigation