Log in

First principles study of structural, elastic, electronic, and optical properties of the cubic perovskites AVO3 (A = Ca and La)

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Using first principle method based on the plane wave pseudo potential calculations and the local density approximation (LDA), we have investigated some basic fundamental properties of CaVO3 and LaVO3 promising cubic perovskites (A = Ca and La). First, the equilibrium lattice parameters have been established to be in a good agreement with the available experimental data. For values of applied pressures up to 30 GPa and at zero temperature absolute, there is no phase transition was observed. Our results show that both compounds were mechanically stable. Static finite strain technique is employed to obtain the elastic constants and their pressure dependence. By analyzing the ratio between the bulk and shear moduli, it was found that LaVO3 is ductile than CaVO3 compound in nature. The metallic character of the studied perovskites was distinguished via their calculated band structure. We have found that O 2p states and V 3d states play a major role in the optical transitions as initial and final states, respectively. Total density of states at Fermi level revealed that LaVO3 should be more conductor than CaVO3. The increase in the antibonding state between the oxygen atoms yield in stiffness decreases. This was deduced when carrying out overlap population analysis. The Mulliken charge transfer suggests that CaVO3 is more covalent (less ionic) than LaVO3. The optical constants, including the dielectric function, and optical reflectivity including electron energy loss, refractive index, optical conductivity, and the linear absorption spectrum were established for radiation up to 20 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Feng, H. Hu, S. Cui, C. Bai, Solid State Commun. 148, 472–475 (2008)

    Article  CAS  Google Scholar 

  2. X.-J. Liu, Wu. Zhi-Jian, X.-F. Hao, H.-P. **ang, J. Meng, Chem Phys Lett. 416, 7–13 (2005)

    Article  CAS  Google Scholar 

  3. Wu. Bo, M. Zinkevich, F. Aldinger, W. Zhang, J Phys Chem Solids. 68, 570–575 (2007)

    Article  Google Scholar 

  4. A. Bouhemadou, F. Djabi, R. Khenata, Phys. Lett. A 372, 4527–4531 (2008)

    Article  CAS  Google Scholar 

  5. I.R. Shein, V.L. Kozhevnikov, A.L. Ivanovskii, Solid State Sci. 10, 217–225 (2008)

    Article  CAS  Google Scholar 

  6. Lu. Zhouguang, L. Chen, Y. Tang, Y. Li, J. Alloys Compd. 387, L1–L4 (2005)

    Article  Google Scholar 

  7. M. Liberati, R.V. Chopdekar, V. Mehta, E. Arenholz, Y. Suzuki, J. Magn. Magn. Mater. 321, 2852–2854 (2009)

    Article  CAS  Google Scholar 

  8. R. Xua, X. Zhanga, D. Zhang, J. Liu, J. Luc, R. Zhao, Y. Ji, F. Qiana, H. Wang, J. Fan, W. Li, H. Yang, J. Alloys Compd. 890, 161897 (2021)

    Article  Google Scholar 

  9. F. Iga, Y. Nishihara, J. Phys. Soc. Jpn. 61, 1867 (1992)

    Article  CAS  Google Scholar 

  10. H. Dixit, D. Punetha, S.K. Pandey, J Electron Mater. 48, 7696–7703 (2019)

    Article  CAS  Google Scholar 

  11. D.H. Jung, J.W. Hwang, J.J. Lee, D.H. Shin, H. Lee, J. Alloys Compd 904, 163818 (2022)

    Article  CAS  Google Scholar 

  12. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr. 220, 567 (2005)

    Article  CAS  Google Scholar 

  13. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett 45, 566–569 (1980)

    Article  CAS  Google Scholar 

  14. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048–5079 (1981)

    Article  CAS  Google Scholar 

  15. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Matter. 14, 2717 (2002)

    Article  CAS  Google Scholar 

  16. J.D. Pack, H.J. Monkhorst, Phys. Rev B. 16, 1748 (1977)

    Article  Google Scholar 

  17. T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768 (1992)

    Article  CAS  Google Scholar 

  18. Q. Mahmood, B.U. Haq, M. Yaseen, A. Shahid, A. Laref, Solid State Commun. 299, 113654 (2019)

    Article  CAS  Google Scholar 

  19. N. Xu, H. Zhao, X. Zhou, W. Wei, X. Lu, W. Ding, F. Li, J. Hydrogen Energy. 35, 7295–7301 (2010)

    Article  CAS  Google Scholar 

  20. O. Muller, R. Roy, The Major Ternary Structural Families (Springer, NewYork Heidelberg-Berlin, 1974)

    Book  Google Scholar 

  21. R.L. Moreira, A. Dias, J Phys Chem Solids. 68, 1617–1622 (2007)

    Article  CAS  Google Scholar 

  22. L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, C.H. Li, J Phys Chem Solids. 67, 1531–1536 (2006)

    Article  CAS  Google Scholar 

  23. J.F. Nye, Propriétés physiques des matériaux, Dunod, (1961)

  24. J. Wang, S. Yip, S.R. Phillpot, D. Wolf, Phys. Rev. Lett. 71, 4182 (1993)

    Article  CAS  Google Scholar 

  25. O.L. Anderson, J. Phys. Chem. Solids. 24, 909 (1963)

    Article  CAS  Google Scholar 

  26. D.J. Green, An introduction to the mechanical properties of ceramics (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  27. D. Music, J.M. Schneider, Appl. Phy. Lett. 89, 1219144 (2006)

    Article  Google Scholar 

  28. D. Music, Z. Sun, J.M. Schneider, Phys. Rev. B. 71, 092102 (2005)

    Article  Google Scholar 

  29. V. Kumar, A.K. Shrivastava, R. Banerji, D. Dhirhe, Solid State Commun. 149, 1008–1011 (2009)

    Article  CAS  Google Scholar 

  30. M. Alouani, J.M. Wills, Phys. Rev B. 54, 2487 (1996)

    Article  Google Scholar 

  31. H. Wang, B. Wang, R. Wang, Q.K. Li, Phys. B: Condens Matter. 390, 96–100 (2007)

    Article  CAS  Google Scholar 

  32. D. Music, J.M. Schneider, App. Phys. Lett. 88, 031914 (2006)

    Article  Google Scholar 

  33. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    Google Scholar 

  34. A. Bouhemadou, R. Khenata, F. Djabi, Solid State Sci. 11, 556–561 (2009)

    Article  CAS  Google Scholar 

  35. M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne, Phys. Rev B. 54, 16317 (1996)

    Article  CAS  Google Scholar 

  36. H. Zhao, Y.W. AiminChang, Phys. B: Condens Matter. 404, 2192–2196 (2009)

    Article  CAS  Google Scholar 

  37. C. Li, B. Wang, R. Wang, H. Wang, X. Lu, Phys. B: Condens. Matter. 403, 539 (2008)

    Article  CAS  Google Scholar 

  38. M.L. Cohen, Phys. Rev. B. 32, 7988 (1985)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge and thank “La Direction Générale de la Recherche Scientifique et du Développement Technologique” (DGRSDT), Algeria. Moreover, we send sincere thanks to Laboratory for Develo** New Materials and their Characterizations, University of Setif1, Algeria.

Funding

This work receives funding in the framework of National Research Projects, “Projets de Recherche-Formation Universitaire” (PRFU) registered under the serial number B00L02UN190120220001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Nemla.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemla, F., Cherrad, D. First principles study of structural, elastic, electronic, and optical properties of the cubic perovskites AVO3 (A = Ca and La). emergent mater. 5, 175–186 (2022). https://doi.org/10.1007/s42247-022-00369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00369-9

Keywords

Navigation