Log in

Brief introduction of keratin and its biological application, especially in drug delivery

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Biopolymers have been extensively studied as biomaterials for clinical applications due to the specific advantages, such as ample natural abundance, outstanding biocompatibility and biodegradability, and non-inflammatory and enormous functional groups. Protein-based biomaterials have been used in many biotechnology and biomedicine applications. This article briefly introduces the structure and extraction of filament proteins, keratin, and then focuses on the recent researches on the application of keratin in drug delivery systems. At the same time, it briefly introduces the application of keratin in tissue engineering. Finally, the problems existing in the application of keratin in the above aspects are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Gorman, Materials take wing: What to do with 4 billion pounds of feathers? Sci. News 161, 120 (2002)

    Article  Google Scholar 

  2. K. Jayathilakan, K. Sultana, K. Radhakrishna, A.S. Bawa, Utilization of by products and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 49, 278–293 (2012)

    Article  CAS  Google Scholar 

  3. K. Song, X. Qian, X. Zhu, X. Li, X. Hong, Fabrication of mechanical robust keratin film by mesoscopic molecular network reconstruction and its performance for dye removal. J. Colloid Interface Sci. 579, 28–36 (2020)

    Article  CAS  Google Scholar 

  4. C.S. Ng, P. Wu, W.L. Fan, J. Yan, C.K. Chen, Y.T. Lai, S.M. Wu, C.T. Mao, J.J. Chen, M.Y. Lu, M.R. Ho, R.B. Widelitz, C.F. Chen, C.M. Chuong, W.H. Li, Genomic organization, transcriptomic analysis, and functional characterization of avian alpha- and beta-keratins in diverse feather forms. Genome biol. evol. 6(9), 2258–2273 (2014)

    Article  Google Scholar 

  5. A.L. Martínez-Hernández, A.L. Santiago-Valtierra, M.J. Alvarez-Ponce, Chemical modification of keratin biofibres by graft polymerisation of methyl methacrylate using redox initiation. Mater. Res. Innov. 12(4), 184–191 (2008)

    Article  Google Scholar 

  6. Y. Esparza, N. Bandara, A. Ullah, J.P. Wu, Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins. Mater. Sci. Eng. C 90, 446–453 (2018)

    Article  CAS  Google Scholar 

  7. D. Fass, C. Thorpe, Chemistry and enzymology of disulfide cross–linking in proteins. Chem. Rev. 118(3), 1169–1198 (2017)

    Article  Google Scholar 

  8. K. Song, S. Rahman, W. Zhu, X. Zhu, Fabrication of echanical robust keratin film by mesoscopic molecular network reconstruction strategy. Mater. Lett. 272, 127856 (2020)

    Article  CAS  Google Scholar 

  9. Y. Huang, P.K. Busk, F.A. Herbst, L. Lange, Genome and secretome analyses provide insights into keratin decomposition by novel proteases from the non-pathogenic fungus Onygena corvina. Appl. Microbiol. Biotechnol. 99, 9635–9649 (2015)

    Article  CAS  Google Scholar 

  10. P. Hill, H. Brantley, M. Van Dyke, Some properties of keratin biomaterials: Kerateines. Biomaterials 31, 585–593 (2010)

    Article  CAS  Google Scholar 

  11. M.A. Hassan, D. Abol-Fotouh, A.M. Omer, T.M. Tamer, A. Eman, Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: a review Int. J. Biol. Macromol. 154, 567–583 (2020)

    Article  CAS  Google Scholar 

  12. S.M. Choi, P. Chaudhry, S.M. Zo, S.S. Han, Advances in protein–based materials: from origin to novel biomaterials. Adv. Exp. Med. Biol. 1078, 161–210 (2018)

    Article  CAS  Google Scholar 

  13. W.I. Patterson, W.B. Geiger, L.R. Mizell, M. Harris, The role of cystine in the structure of the fibrous proteins, wool. J. Res. Natl. Bur. Stand. 27, 89–103 (1941)

    Article  CAS  Google Scholar 

  14. K. Katoh, T. Tanabe, K. Yamauchi, Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials 25, 4255–4262 (2004)

    Article  CAS  Google Scholar 

  15. H. Xu, Z. Ma, Y. Yang, Dissolution and regeneration of wool via controlled disintegration and disentanglement of highly crosslinked keratin. J. Mater. Sci. 49, 7513–7521 (2014)

    Article  CAS  Google Scholar 

  16. P.M.M. Schrooyen, P.J. Dijkstra, R.C. Oberthür, A. Bantjes, J. Feijen, Stabilization of solutions of feather keratins by sodium dodecyl sulfate. J. Colloid Interface Sci. 240, 30–39 (2001)

    Article  CAS  Google Scholar 

  17. W.S. Simpson, G.H. Crawshaw, Wool: science and technology. CRC Press (2002)

  18. J. Millard, M.J. Horn, D.B. Jones, S. Ringel, Isolation of a new sulfur-containing amino acid (lanthionine) from sodium carbonate-treated wool. J. Biol. Chem. 138, 141–149 (1941)

    Article  Google Scholar 

  19. S. Blackburn, G.R. Lee, The reaction of wool keratin with alkali. Biochim. Biophys. Acta 19, 505–512 (1956)

    Article  CAS  Google Scholar 

  20. J.L. Huang, M.E. Noss, K.M. Schmidt, The effect of neat ionic liquid on the folding of short peptides, Chem Commun. 47(28), 8007–8009 (2011)

  21. H.B. **e, S.H. Li, S.B. Zhang, Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem. 7, 606–608 (2005)

    Article  CAS  Google Scholar 

  22. M. Wang, T. Zhao, G. Wang, Blend films of human hair and cellulose prepared from an ionic liquid. Text. Res. J. 84(12), 1315–1324 (2014)

    Article  Google Scholar 

  23. C. Earland, C.S. Knight, Studies on the structure of keratin: I. The analysis of fractions isolated from wool oxidized with peracetic acid. Biochim. Biophys. Acta 17, 457–461 (1955)

    Article  CAS  Google Scholar 

  24. H.H. Stein, J. Guarnaccio, Infrared study of oxidized keratin. Text. Res. J. 29, 492–496 (1959)

    Article  CAS  Google Scholar 

  25. C. Robbins, Infrared analysis of oxidized keratins. Text. Res. J. 37, 811–813 (1967)

    Article  CAS  Google Scholar 

  26. T. Yamashiki, T. Matsui, M. Saitoh, K. Okajima, K. Kamide, T. Sawada, Characterisation of cellulose treated by the steam explosion method. Part 1: Influence of cellulose resources on changes in morphology, degree of polymerisation, solubility and solid structure. Br. Polym. J. 22, 73–83 (1990)

    Article  CAS  Google Scholar 

  27. C. Tonin, M. Zoccola, A. Aluigi, A. Varesano, A. Montarsolo, C. Vineis, F. Zimbardi, Study on the conversion of wool keratin by steam explosion. Biomacromolecules 7, 3499–3504 (2006)

    Article  CAS  Google Scholar 

  28. W. Xu, G. Ke, J. Wu, X. Wang, Modification of wool fiber using steam explosion. Eur. Polym. J. 42, 2168–2173 (2006)

    Article  CAS  Google Scholar 

  29. Q.H. Fang, P. Zhu, C.H. Dong, J. Liu, J.T. Xu, Study on extraction technology of wool keratin by urea melting method. Journal of QINGDAO UNIVERSITY (E&T) 31, 71–88 (2016)

    Google Scholar 

  30. S.M. Xu, L. Sang, Y.P. Zhang, X.L. Wang, X.D. Li, Biological evaluation of human hair keratin scaffolds for skin wound repair and regeneration. Mater. Sci. Eng. C 33, 648–655 (2013)

    Article  CAS  Google Scholar 

  31. A. Hervault, A.E. Dunn, M. Lim, C. Boyer, D. Mott, S. Maenosono, N.T. Thanh, Doxorubicin loaded dual pH-and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 8, 12152–12161 (2016)

    Article  CAS  Google Scholar 

  32. J.H. Guo, S.J. Pan, X.C. Yin, Y.F. He, T. Li, R.M. Wang, pH–sensitive keratin–based polymer hydrogel and its controllable drug–release behavior. J. Appl. Polym. Sci. 132, 41572 (2015)

    Google Scholar 

  33. Z. Sun, Z. Yi, H.Y. Zhang, X.M. Ma, W. Su, X.Y. Sun, X.D. Li, Bio–responsive alginate–keratin composite nanogels with enhanced drug loading efficiency for cancer therapy. Carbohydr. Polym. 175, 159–169 (2017)

    Article  CAS  Google Scholar 

  34. T.R. Ham, R.T. Lee, S. Han, S. Haque, Y. Vodovotz, J. Gu, L.R. Burnett, S. Tomblyn, J.M. Saul, Tunable keratin hydrogels for controlled erosion and growth factor delivery. Biomacromolecules 17, 225–236 (2016)

    Article  CAS  Google Scholar 

  35. Y.C. Lin, M. Ramadan, M. Van Dyke, L.E. Kokai, B.J. Philips, J.P. Rubin, K.G. Marra, Keratin gel filler for peripheral nerve repair in a rodent sciatic nerve injurymodel. Plast. Reconstr. Surg. 129, 67–78 (2012)

    Article  CAS  Google Scholar 

  36. A. Vasconcelos, A. Cavaco-Paulo, The use of keratin in biomedical applications. Curr. Drug Targets 14, 612–619 (2013)

    Article  CAS  Google Scholar 

  37. Q.M. Li, L.J. Zhu, R.G. Liu, D. Huang, X. **, N. Che, Z. Li, X.Z. Qu, H.L. Kang, Y. Huang, Biological stimuli responsive drug carriers based on keratin for triggerable drug delivery. J. Mater. Chem. 22, 19964–19973 (2012)

    Article  CAS  Google Scholar 

  38. H.O. Haddar, T.I. Zaghloul, H.M. Saeed, Biodegradation of native feather keratin by Bacillus subtilis recombinant strains. Biodegradation 20, 687–694 (2009)

    Article  Google Scholar 

  39. S.Y. Han, M.J. Li, X.G. Liu, H.X. Gao, Y. Wu, Construction of amphiphilic copolymer nanoparticles based on gelatin as drug carriers for doxorubicin delivery. Colloids Surf. B: Biointerfaces 102, 833–841 (2013)

    Article  CAS  Google Scholar 

  40. S.A. Khan, M. Schneider, Improvement of nanoprecipitation technique for preparation of gelatin nanoparticles and potential macromolecular drug loading. Macromol. Biosci. 13, 455–463 (2013)

    Article  CAS  Google Scholar 

  41. M. Rahimnejad, N. Mokhtarian, M. Ghasemi, Production of protein nanoparticles for food and drug delivery system. Afr. J. Biotechnol. 8(19), 685–703 (2009)

    Google Scholar 

  42. A. Aluigi, M. Ballestri, A. Guerrini, G. Sotgiu, C. Ferroni, F. Corticelli, M.B. Gariboldi, E. Monti, G. Varchi, Organic solvent–free preparation of keratin nanoparticles as doxorubicin carriers for antitumour activity. Mater. Sci. Eng., C 90, 476–484 (2018)

    CAS  Google Scholar 

  43. X.L. Zhi, Y.F. Wang, P.F. Li, J. Yuan, J. Shen, Preparation of keratin/chlorhexidine complex nanoparticles for long–term and dual stimuli–responsive release. RSC Adv. 5(100), 82334–82341 (2015)

    Article  CAS  Google Scholar 

  44. Y.Q. Cao, Y. Yao, X.X. Yang, Z.J. Guang, Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering. J. Colloid Interface Sci. 544, 121–129 (2019)

    Article  CAS  Google Scholar 

  45. Z. Sun, Z. Yi, X.X. Cui, X.Y. Chen, W. Su, X.X. Ren, X.D. Li, Tumor–targeted and nitric oxide–generated nanogels of keratin and hyaluronan for enhanced cancer therapy. Nanoscale 10(25), 12109–12122 (2018)

    Article  CAS  Google Scholar 

  46. H.F. Zhang, M.L. Pei, P. Liu, pH–Activated surface charge–reversal double–crosslinked hyaluronic acid nanogels with feather keratin as multifunctional crosslinker for tumor–targeting DOX delivery. Int. J. Biol. Macromol. 150, 1104–1112 (2020)

    Article  CAS  Google Scholar 

  47. Z. Yi, Z. Sun, G.C. Chen, X.M. Ma, W. Su, X.X. Cui, X.D. Li, Size–controlled, colloidally stable and functional nanoparticles based on the molecular assembly of green tea polyphenols and keratins for cancer therapy. J. Mater. Chem. B 6(9), 1373–1386 (2018)

    Article  CAS  Google Scholar 

  48. Q.M. Li, S.N. Yang, L.J. Zhu, H.L. Kang, X.Z. Qu, R.G. Liu, Y. Huang, Dual–stimuli sensitive keratin graft PHPMA as physiological trigger responsive drug carriers. Polym. Chem. 6(15), 2869–2878 (2015)

    Article  CAS  Google Scholar 

  49. M. Curcio, B. Blanco-Fernandez, L. Diaz-Gomez, A. Concheiro, C. Alvarez-Lorenzo, Hydrophobically modified keratin vesicles for GSH–responsive intracellular drug release. Bioconjug. Chem. 26(9), 1900–1907 (2015)

    Article  CAS  Google Scholar 

  50. Z. Du, K. Yan, Y. Cao, et al. Regenerated keratin-encapsulated gold nanorods for chemo-photothermal synergistic therapy[J]. Materials Science and Engineering C. 111340, (2020)

  51. R. Ghaffari, N. Eslahi, E. Tamjid, A. Simchi, Dual–sensitive hydrogel nanoparticles based on conjugated thermoresponsive copolymers and protein filaments for triggerable drug delivery. ACS Appl. Mater. Interfaces 10(23), 19336–19346 (2018)

    Article  CAS  Google Scholar 

  52. L. Bildstein, C. Dubernet, P. Couvreur, Prodrug-based intracellular delivery of anticancer agents. Adv. Drug Deliv. Rev. 63, 3–23 (2011)

    Article  CAS  Google Scholar 

  53. J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Jarvinen, J. Savolainen, Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 7(3), 255–270 (2008)

    Article  CAS  Google Scholar 

  54. P.F. Gou, W.W. Liu, W.W. Mao, J.B. Tang, Y.Q. Shen, M.H. Sui, Self-assembling doxorubicin prodrug forming nanoparticles for cancer chemotherapy: Synthesis and anticancer study in vitro and in vivo. J. Mater. Chem. B 1, 284–292 (2013)

    Article  CAS  Google Scholar 

  55. H.J. Song, J. Zhang, W.W. Wang, P.S. Huang, Y.M. Zhang, J.F. Liu, C. Li, D.L. Kong, Acid-responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin-1 receptor-mediated targeted drug delivery. Colloid Surf. B–Biointerfaces 136, 365–374 (2015)

    Article  CAS  Google Scholar 

  56. H.F. Zhang, M.L. Pei, P. Liu, Keratin–based drug–protein conjugate with acid–labile and reduction–cleavable linkages in series for tumor intracellular DOX delivery. J. Ind. and Eng. 80, 739–748 (2019)

    CAS  Google Scholar 

  57. H.F. Zhang, P. Liu, Drug–conjugation induced self–assembly of feather keratin–based prodrug for tumor intracellular reduction triggered drug delivery. Part. Part. Syst. Charact. 36(10), 1900189 (2019)

    Article  CAS  Google Scholar 

  58. P.C. Liu, Q. Wu, Y.M. Li, et al., DOX-Conjugated keratin nanoparticles for pH-Sensitive drug delivery[J]. Colloids Surf. B: Biointerfaces 181, 1012–1018 (2019)

    Article  CAS  Google Scholar 

  59. D. Fass, C. Thorpe, Chemistry and enzymology of disulfide cross-linking in proteins. Chem. Rev. 118, 1169–1198 (2018)

    Article  CAS  Google Scholar 

  60. G.M.N. Neubi, Y. Opoku-Damoah, X.G. Gu, Y. Han, J.P. Zhou, Y. Ding, Bio-inspired drug delivery systems: an emerging platform for targeted cancer therapy. Biomater. Sci. 6, 958–973 (2018)

    Article  Google Scholar 

  61. D. Agudelo, G. Berube, H.A. Tajmir-Riahi, An overview on the delivery of antitumor drug doxorubicin by carrier proteins. Int. J. Biol. Macromol. 88, 354–360 (2016)

    Article  CAS  Google Scholar 

  62. Y. Li, K. Song, Y. Cao, C. Peng, G. Yang, Keratin–templated synthesis of metallic oxide nanoparticles as MRI contrast agents and drug carriers. Acs Appl. Mater. Interfaces 10(31), 26039–26045 (2018)

    Article  CAS  Google Scholar 

  63. A.B. Uzdensky, E.V. Berezhnaya, V.D. Kovaleva, M.A. Neginskaya, M. Rudkovskii, S. Sharifulina, Photodynamic therapy: A review of applications in neurooncology and neuropathology. J. Biomed. Opt. 20, 061108 (2015)

    Article  Google Scholar 

  64. A. Aluigi, G. Sotgiu, C. Ferroni, S. Duchi, E. Lucarelli, C. Martini, T. Posati, A. Guerrini, M. Ballestri, F. Corticellic, G. Varchi, Chlorin e6 keratin nanoparticles for photodynamic anticancer therapy. RSC Adv. 6(40), 33910–33918 (2016)

    Article  CAS  Google Scholar 

  65. K. Song, W. Zhu, X. Li, Z. Yu, A novel mechanical robust, self-healing and shape memory hydrogel based on PVA reinforced by cellulose nanocrystal. Mater. Lett. 260, 126884 (2019)

    Article  Google Scholar 

  66. L.R. Burnett, M.B. Rahmany, J.R. Richter, T.A. Aboushwareb, D. Eberli, C.L. Ward, G. Orlando, R.R. Hantgan, M.E. Van Dyke, Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Biomaterials 34, 2632–2640 (2013)

    Article  CAS  Google Scholar 

  67. H. Lee, K. Noh, S.C. Lee, I.K. Kwon, D.W. Han, I.S. Lee, Y.S. Hwang, Human hair keratin and its-based biomaterials for biomedical applications. Tissue Eng. Regen. Med. 11, 255–265 (2014)

    Article  CAS  Google Scholar 

  68. S. Tomblyn, E.L. Pettit Kneller, S.J. Walker, M.D. Ellenburg, C.J. Kowalczewski, M. Van Dyke, L. Burnett, J.M. Saul, Keratin hydrogel carrier system for simultaneous delivery of exogenous growth factors and muscle progenitor cells. J Biomed Mater Res B Appl Biomater 104B, 864–879 (2016)

    Article  Google Scholar 

  69. J.G. Rouse, M.E. Van Dyke, A review of keratin-based biomaterials for biomedical applications. Materials 3, 999–1014 (2010)

    Article  Google Scholar 

  70. V.V. Poonam Verman, A.R. Pratima Ray, Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed. Mater. 3, 025007–025019 (2008)

    Article  Google Scholar 

  71. S. Reichl, Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials 30, 6854–6866 (2009)

    Article  CAS  Google Scholar 

  72. C. Ferroni, G. Sotgiu, A. Sagnella, G. Varchi, A. Guerrini, D. Giuri, E. Polo, V.T. Orlandi, E. Marras, M. Gariboldi, E. Monti, A. Aluigi, Wool keratin 3D scaffolds with light–triggered antimicrobial activity. Biomacromolecules 17, 2882–2890 (2016)

    Article  CAS  Google Scholar 

  73. D. Barati, S. Kader, S.R. Pajoum Shariati, S. Moeinzadeh, R.H. Sawyer, E. Jabbari, Synthesis and characterization of photo-cross-linkable keratin hydrogels for stem cell encapsulation. Biomacromolecules 18(2), 398–412 (2017)

    Article  CAS  Google Scholar 

  74. K. Yamauchi, M. Maniwa, T. Mori, Cultivation of fibroblast cells on keratin-coated substrata. J. Biomat. Sci-Polym. E. 9(3), 259–270 (1998)

    Article  CAS  Google Scholar 

  75. M. Park, H.K. Shin, B.S. Kim, M.J. Kim, I.S. Kim, B.Y. Park, H.Y. Kim, Effect of discarded keratin-based biocomposite hydrogels on the wound healing process in vivo. Mater. Sci. Eng., C 55, 88–94 (2015)

    CAS  Google Scholar 

  76. T. Aboushwareb, D. Eberli, C. Ward, C. Broda, J. Holcomb, A. Atala, M. Van Dyke, A keratin biomaterial gel hemostat derived from human hair: evaluation in a rabbit model of lethal liver injury. J. Biomed. Mater. Res. Part B 90B(1), 45–54 (2009)

  77. J. Wang, S. Hao, T. Luo, Z. Cheng, W. Li, F. Gao, T. Guo, Y. Gong, B. Wang, Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation. Colloids Surf. B. Biointerfaces 149, 341–350 (2017)

    Article  CAS  Google Scholar 

  78. P. Li, Y. Wang, X. **, et al., Catalytic generation of nitric oxide from poly(ε-caprolactone)/phosphobetainized keratin mats for a vascular tissue engineering scaffold[J]. Langmuir 36(16), 4396–4404 (2020)

    Article  CAS  Google Scholar 

  79. L.A. Pace, J.F. Plate, T.L. Smith, M.E. Van Dyke, The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model. Biomaterials 34, 5907–5914 (2013)

    Article  CAS  Google Scholar 

  80. S.L. Lavanya, R. Love, M. Ali, A. Sharma, S. Macari, A. Avadhani, G. Dias, Healing response of rat pulp treated with an injectable keratin hydrogel. J. Appl. Biomater. Funct. Mater. 18(3), 169 (2017)

    Google Scholar 

  81. C.J. Kowalczewski, S. Tombyln, D.C. Wasnick, M.R. Hughes, M.D. Ellenburg, M.F. Callahan, T.L. Smith, M.E. Van Dyke, L.R. Burnett, J.M. Saul, Reduction of ectopic bone growth in critically-sized rat mandible defects by delivery of rhBMP-2 from kerateine biomaterials. Biomaterials 35, 3220–3228 (2014)

    Article  CAS  Google Scholar 

  82. A. Jain, V. Ravi, J. Muhamed, K. Chatterjee, N.R. Sundaresan, A simplified protocol for culture of murine neonatal cardiomyocytes on nanoscale keratin coated surfaces. Int. J. Cardiol. 232, 160–170 (2017)

    Article  Google Scholar 

  83. W. Shi, M.-J. Dumont, Review: Bio-based films from zein, keratin, pea, and rapeseed protein feedstocks [J]. J. Mater. Sci. 49, 1915–1930 (2014)

    Article  CAS  Google Scholar 

  84. G. Rocha Plácido Moore, S. Maria Martelli, C. Gandolfo, P. José do Amaral Sobral, J. Borges Laurindo, Influence of the glycerol concentration on some physical properties of feather keratin films [J]. Food Hydrocoll. 20, 975–982 (2006)

    Article  Google Scholar 

  85. Y. Dou, X. Huang, B.N. Zhang, M. He, G.Q. Yin, Y.D. Cui, Preparation and characterization of a dialdehyde starch crosslinked feather keratin film for food packaging application [J]. RSC Adv. 5, 27168–27174 (2015)

    Article  CAS  Google Scholar 

  86. E.Q. **, N. Reddy, Z.F. Zhu, Y.Q. Yang, Graft polymerization of native chicken feathers for thermoplastic applications [J]. J. Agric. Food Chem. 59, 1729–1738 (2011)

    Article  CAS  Google Scholar 

  87. P. Naderi, M. Zarei, S. Karbasi, H. Salehi, Evaluation of the effects of keratin on physical, mechanical and biological properties of poly (3-hydroxybutyrate) electrospun scaffold: Potential application in bone tissue engineering. European Polymer Journal[J] 124, 109502 (2020)

    Article  CAS  Google Scholar 

  88. Mori,H.; Hara, M. Transparent biocompatible wool keratin film prepared by mechanical compression of porous keratin hydrogel[J], Mat Sci Een C-Mater, 2018,91,19-25.

  89. T.Y. Lu, W.C. Huang, Y. Chen, N. Baskaran, J.S. Yua, Y. Wei, Effect of varied hair protein fractions on the gel properties of keratin/chitosan hydrogels for the use in tissue engineering[J]. Colloids Surf. B 195, 111258 (2020)

    Article  CAS  Google Scholar 

  90. X. Mi, B.N. Mu, W. Li, H.l. Xu, Y.Q. Yang, From poultry wastes to quality protein products via restoration of secondary structure with extended disulfide linkages[J]. ACS Sustain. Chem. Eng. 8, 1396–1405 (2020)

  91. X. Mi, W. Li, H.L. Xu, B.N. Mu, Y.Q. Yang, Transferring feather wastes to ductile keratin filaments towards a sustainable poultry industry[J]. Waste Manag. 115, 65–73 (2020)

    Article  CAS  Google Scholar 

  92. S. Ding, Y. Sun, H. Chen, C. Xu, Y. Hu, An ultrasonic-ionic liquid process for the efficient acid catalyzed hydrolysis of feather keratin. Chin. J. Chem. Eng. 27(3), 660–667 (2019)

    Article  CAS  Google Scholar 

  93. A. Shavandi, T.H. Silva, A.A. Bekhit, A.E.D.A. Bekhit, Keratin: Dissolution, extraction and biomedical application [J]. Biomater. Sci. 5, 1699–1735 (2017)

    Article  CAS  Google Scholar 

  94. Y.B. Li, H.H. Liu, X.C. Wang, X.X. Zhang, Fabrication and performance of wool keratin/ functionalized graphene oxide composite fibers [J]. Materials Today Sustainability 3-4, 100006 (2019)

    Article  Google Scholar 

  95. G. Guidotti, M. Soccio, T. Posati, G. Sotgiu, M. Tiboni, M. Barbalinardo, F. Valle, L. Casettari, R. Zamboni, N. Lotti, A. Aluigi, Regenerated wool keratin-polybutylene succinate nanofibrous mats for drug delivery and cells culture[J]. Polym. Degrad. Stab. 179, 109272 (2020)

    Article  CAS  Google Scholar 

  96. L.E. Rojas-Martínez, L.M. López-Marín, F.H. A, et al., 3D printing of PLA composites scaffolds reinforced with keratin and chitosan: Effect of geometry and structure [J]. Eur. Polym. J. 141, 110088 (2020)

    Article  Google Scholar 

  97. T.H. Silva, A. Alves, B.M. Ferreira, J.M. Oliveira, L.L. Reys, R.J.F. Ferreira, R.A. Sousa, S.S. Silva, J.F. Mano, R.L. Reis, Materials of marine origin: a review on polymers and ceramics of biomedical interest Int. Mater Rev 57, 276–306 (2012)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Doctor Research Initiation Fund Project of Lanzhou City College (No. LZCU-BS2019-38)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huifang Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Su, F., Ma, X. et al. Brief introduction of keratin and its biological application, especially in drug delivery. emergent mater. 4, 1225–1242 (2021). https://doi.org/10.1007/s42247-021-00216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00216-3

Keywords

Navigation