Log in

Hole inhibition mechanisms of Mg/steel lap joint by pinless friction stir spot welding

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Pinless friction stir spot welding (P-FSSW) was performed to manufacture Mg/steel lap joints. Orthogonal tests for P-FSSW of Mg/steel were investigated, and the main factors affecting the properties of Mg/steel lap joints were derived. The shear force of the Mg/steel lap joints gradually increased and then decreased as the welding time increased. Maximum shear force was 5.3 kN. Fe–Al intermetallic compound (IMC) was formed at the Mg/steel interface near the steel side, and Mg–Al IMCs were formed at the Mg/steel interface near the Mg alloy side. Mg/steel lap joint was transformed from an initial solid-state welding to fusion-brazing welding as the welding time increased. No hole defects were formed in Mg/steel solid-state welding joints, whereas hole defects appeared in Mg/steel fusion-brazing welding joints. The temperature field of Mg/steel lap joints was simulated to analyze hole defects generated during the welding process. Hole defects can be eliminated by changing the spindle deflection angle, and the shear force decreased. Excessive spindle deflection can also lead to failure to form a stable joint. Hole defects were removed because the spindle deflection angle reduced the interfacial reaction temperature, and a solid-state welding joint was formed, which resulted in an absence of fusion-brazing welding hole formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. P. Xue, B.L. **ao, Z.Y. Ma, Metall. Mater. Trans. A 46 (2015) 3091–3103.

    Article  Google Scholar 

  2. T. Li, X. **e, J. Xu, R. Li, K. Qi, X. Zhang, H. Yue, Y. Zhao, L. Qiao, J. Mater. Res. Technol. 26 (2023) 3710–3725.

    Article  Google Scholar 

  3. D. Ren, L. Liu, Mater. Des. 59 (2014) 369–376.

    Article  Google Scholar 

  4. G. Song, G. An, L. Liu, Mater. Des. 35 (2012) 323–329.

    Article  Google Scholar 

  5. Q. Lang, Z. Zhang, Z. Wang, G. Song, M.S. Khan, L. Liu, Mater. Charact. 204 (2023) 113134.

    Article  Google Scholar 

  6. S. Sahu, O. Mypati, S.K. Pal, M. Shome, P. Srirangam, CIRP J. Manuf. Sci. Technol. 35 (2021) 502–516.

    Article  Google Scholar 

  7. X. Fu, K. Chen, C. Liu, M. Wang, X. Hua, Mater. Charact. 187 (2022) 111870.

    Article  Google Scholar 

  8. J. Cheng, X. Hu, X. Sun, A. Vivek, G. Daehn, D. Cullen, J. Mater. Sci. Technol. 59 (2020) 149–163.

    Article  Google Scholar 

  9. J. Cheng, X. Hu, X. Sun, Comput. Mater. Sci. 185 (2020) 109988.

    Article  Google Scholar 

  10. L. Walker, C. Fink, C. Hilla, Y. Lu, W. Zhang, Mater. Des. 230 (2023) 111980.

    Article  Google Scholar 

  11. Z. He, D. Zhou, X. Du, X. Wang, H. Li, J. Liu, Optik 277 (2023) 170716.

    Article  Google Scholar 

  12. T. Tao, J.S. Liu, D.W. Zhou, H.M. Li, X.Y. Wang, Trans. Nonferrous Met. Soc. China 33 (2023) 765–776.

    Article  Google Scholar 

  13. Y. Rong, H. Li, D. Cheng, Z. **ong, Y. Chen, Z. Liu, W. Li, Int. J. Light. Mater. Manuf. 4 (2021) 416–422.

    Google Scholar 

  14. H. Li, D. Zhou, X. Wang, Opt. Laser Technol. 158 (2023) 108857.

    Article  Google Scholar 

  15. T. Li, X. Bi, R. Li, Mater. Des. 219 (2022) 110763.

    Article  Google Scholar 

  16. J. Jun, V.V. Joshi, A. Crawford, V. Viswanathan, D.N. Leonard, J. Chen, P. Updadhyay, Y.C. Lim, Z. Feng, J. Magnes. Alloy. 11 (2023) 462–479.

    Article  Google Scholar 

  17. L. Li, C. Tan, Y. Chen, W. Guo, C. Mei, J. Mater. Process. Technol. 213 (2013) 361–375.

    Article  Google Scholar 

  18. C.W. Tan, L.Q. Li, Y.B. Chen, C.X. Mei, W. Guo, Int. J. Adv. Manuf. Technol. 68 (2013) 1179–1188.

    Article  Google Scholar 

  19. S. Manickam, C. Rajendran, S. Ragu Nathan, V. Sivamaran, V. Balasubramanian, Int. J. Light. Mater. Manuf. 6 (2023) 33–45.

    Google Scholar 

  20. S. Manickam, C. Rajendran, V. Balasubramanian, Heliyon 6 (2020) e04077.

    Article  Google Scholar 

  21. S. Alaeibehmand, E. Ranjbarnodeh, S.E. Mirsalehi, Mater. Charact. 180 (2021) 111400.

    Article  Google Scholar 

  22. R. Li, T. Li, J. Xu, H. Ding, Mater. Charact. 203 (2023) 113092.

    Article  Google Scholar 

  23. S. Bozzi, A.L. Helbert-Etter, T. Baudin, V. Klosek, J.G. Kerbiguet, B. Criqui, J. Mater. Process. Technol. 210 (2010) 1429–1435.

    Article  Google Scholar 

  24. R.Z. Xu, D.R. Ni, Q. Yang, C.Z. Liu, Z.Y. Ma, J. Mater. Sci. 50 (2015) 4160–4173.

    Article  Google Scholar 

  25. C. Schneider, T. Weinberger, J. Inoue, T. Koseki, N. Enzinger, Sci. Technol. Weld. Join. 16 (2011) 100–107.

    Article  Google Scholar 

  26. Y.C. Chen, K. Nakata, Mater. Des. 30 (2009) 3913–3919.

    Article  Google Scholar 

  27. Y.C. Chen, K. Nakata, Mater. Trans. 50 (2009) 2598–2603.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Number 52001141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao-tao Li or Rui-feng Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Tt., Ding, Hd., Li, Rf. et al. Hole inhibition mechanisms of Mg/steel lap joint by pinless friction stir spot welding. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01263-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01263-w

Keywords

Navigation