Log in

Effect of isothermal martensite and bainite transformation on microstructure and properties in a medium-carbon high-strength Q&P steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of the amount of isothermal martensite and bainite on the microstructure and properties in a medium-carbon quenching and partitioning (Q&P) steel was investigated by designing the different Q&P treatment parameters. The results show that the amount of isothermal martensite increased gradually with the increase in quenching time. The increase in isothermal martensite amount improved the product of strength and elongation (PSE) of Q&P steels. In addition, the increase in carbides amount and the recovery in prior martensite with longer partitioning time led to an increase in PSE first and then, a decrease. It implies that a higher PSE could be obtained by the selection of a suitable partitioning time. Furthermore, the effect of bainite transformation during partitioning on PSE was investigated by designing the different partitioning temperatures, including 300, 400 (below bainite starting temperature, Bs) and 480 °C (above Bs). The results show that compared with the samples partitioned at temperature above Bs, the bainite transformation was only detected when the samples were partitioned at temperature below Bs. The bainite transformation amount increased with the decreasing partitioning temperature, leading to the inhibition of carbides precipitation and more stable RA and thus, resulting in the highest PSE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Curr. Opin. Solid State Mater. Sci. 8 (2004) 219–237.

    Article  Google Scholar 

  2. J.G. Speer, E. De Moor, K.O. Findley, D.K. Matlock, B.C. De Cooman, D.V. Edmonds, Metall. Mater. Trans. A 42 (2011) 3591–3601.

    Article  Google Scholar 

  3. Y.J. Liu, X.L. Gan, W. Liang, G. Xu, J.H. Qi, M. Liu, Materials 16 (2023) 3575.

    Article  Google Scholar 

  4. M. Liu, J.H. Hu, M. Kern, B. Lederhaas, G. Xu, C. Bernhard, Trans. Indian Inst. Met. 74 (2021) 3265–3272.

    Article  Google Scholar 

  5. M. Liu, J. Wang, Q. Zhang, H. Hu, G. Xu, Met. Mater. Int. 27 (2021) 2473–2480.

    Article  Google Scholar 

  6. A. Zinsaz-Borujerdi, A. Zarei-Hanzaki, H.R. Abedi, M. Karam-Abian, H. Ding, D. Han, N. Kheradmand, Mater. Sci. Eng. A 725 (2018) 341–349.

    Article  Google Scholar 

  7. J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611–2622.

    Article  Google Scholar 

  8. J. Tian, G. Xu, Z. Jiang, H. Hu, M. Zhou, Met. Mater. Int. 24 (2018) 1202–1212.

    Article  Google Scholar 

  9. G. Xu, F. Liu, L. Wang, H. Hu, Scripta Mater. 68 (2013) 833–836.

    Article  Google Scholar 

  10. S. Golchin, B. Avishan, S. Yazdani, Mater. Sci. Eng. A 656 (2016) 94–101.

    Article  Google Scholar 

  11. Q. Li, X. Huang, W. Huang, Mater. Sci. Eng. A 662 (2016) 129–135.

    Article  Google Scholar 

  12. Y. Toji, G. Miyamoto, D. Raabe, Acta Mater. 86 (2015) 137–147.

    Article  Google Scholar 

  13. M.C. Somani, D.A. Porter, L.P. Karjalainen, R.D.K. Misra, Metall. Mater. Trans. A 45 (2014) 1247–1257.

    Article  Google Scholar 

  14. D.H. Kim, J.G. Speer, H.S. Kim, B.C. De Cooman, Metall. Mater. Trans. A 40 (2009) 2048–2060.

    Article  Google Scholar 

  15. J. Guan, M. Liu, J. Tian, Z. Chen, G. Xu, Trans. Indian Inst. Met. 74 (2021) 3265–3272.

    Article  Google Scholar 

  16. J. Tian, G. Xu, Z. Jiang, H. Hu, Q. Yuan, X. Wan, Met. Mater. Int. 26 (2020) 961–972.

    Article  Google Scholar 

  17. I. Miettunen, S. Ghosh, M.C. Somani, S. Pallaspuro, J. Kömi, J. Mater. Res. Technol. 11 (2021) 1045–1060.

    Article  Google Scholar 

  18. M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, Acta Mater. 59 (2011) 6059–6068.

    Article  Google Scholar 

  19. F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, M.J. Santofimia, Acta Mater. 104 (2016) 72–83.

    Article  Google Scholar 

  20. H.Y. Li, X.W. Lu, X.C. Wu, Y.A. Min, X.J. **, Mater. Sci. Eng. A 527 (2010) 6255–6259.

    Article  Google Scholar 

  21. S. Yan, X. Liu, W.J. Liu, H. Lan, H. Wu, Mater. Sci. Eng. A 640 (2015) 137–146.

    Article  Google Scholar 

  22. M. Mohammadi Zahrani, M. Ketabchi, E. Ranjbarnodeh, J. Mater. Res. Technol. 22 (2023) 2806–2818.

    Article  Google Scholar 

  23. S. Pashangeh, M. Somani, S.S. Ghasemi Banadkouki, ISIJ Int. 61 (2021) 442–451.

    Article  Google Scholar 

  24. Q.G. Li, Y.N. Zhang, W.D. Li, X.F. Huang, W.G. Huang, J. Mater. Eng. Perform. 29 (2020) 32–41.

    Article  Google Scholar 

  25. C.Y. Wang, J. Shi, W.Q. Cao, H. Dong, Mater. Sci. Eng. A 527 (2010) 3442–3449.

    Article  Google Scholar 

  26. M. Zhou, G. Xu, L. Wang, B. He, Trans. Indian Inst. Met. 70 (2017) 1447–1453.

    Article  Google Scholar 

  27. Y. Liu, X. Gan, S. Wang, H. Yang, Y. Li, G. Xu, Steel Res. Int. 94 (2023) 2200840.

    Article  Google Scholar 

  28. F.G. Caballero, M.J. Santofimia, C. García-Mateo, J. Chao, C. García de Andrés, Mater. Des. 30 (2009) 2077–2083.

    Article  Google Scholar 

  29. H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, R.W. Reed, Mats. Sci. Tech. 7 (1991) 686–698.

    Article  Google Scholar 

  30. A. Lindström, Austempered high silicon steel: investigation of wear resistance in a carbide free microstructure, Luleå University of Technology, Luleå, Sweden, 2006.

  31. J. Tian, G. Xu, L. Wang, M. Zhou, H. Hu, Trans. Indian Inst. Met. 71 (2018) 185–194.

    Article  Google Scholar 

  32. M. Liu, G. Xu, J.Y. Tian, Q. Yuan, X. Chen, Int. J. Miner. Metall. Mater. 27 (2020) 340–346.

    Article  Google Scholar 

  33. J. Tian, G. Xu, H. Hu, X. Wang, H. Zurob, J. Mater. Res. Technol. 9 (2020) 13594–13606.

    Article  Google Scholar 

  34. A. Navarro-López, J. Hidalgo, J. Sietsma, M.J. Santofimia, Mater. Sci. Eng. A 735 (2018) 343–353.

    Article  Google Scholar 

  35. M. Saeglitz, G. Krauss, Metall. Mater. Trans. A 28 (1997) 377–387.

    Article  Google Scholar 

  36. H. Kong, Q. Chao, M.H. Cai, E.J. Pavlina, B. Rolfe, P.D. Hodgson, H. Beladi, Mater. Sci. Eng. A 707 (2017) 538–547.

    Article  Google Scholar 

  37. X. Tan, Y. Xu, X. Yang, D. Wu, Mater. Sci. Eng. A 589 (2014) 101–111.

    Article  Google Scholar 

  38. S. Samanta, P. Biswas, S. Giri, S.B. Singh, S. Kundu, Acta Mater. 105 (2016) 390–403.

    Article  Google Scholar 

  39. N.N. Thadhani, M.A. Meyers, Prog. Mater. Sci. 30 (1986) 0079642586900022.

    Article  Google Scholar 

  40. E.P. Da Silva, D. De Knijf, W. Xu, C. Föjer, Y. Houbaert, J. Sietsma, R. Petrov, Mater. Sci. Technol. 31 (2015) 808–816.

    Article  Google Scholar 

  41. S.M.C. van Bohemen, M.J. Santofimia, J. Sietsma, Scripta Mater. 58 (2008) 488–491.

    Article  Google Scholar 

  42. S. Samanta, P. Biswas, S.B. Singh, Scripta Mater. 136 (2017) 132–135.

    Article  Google Scholar 

  43. G.A. Thomas, J.G. Speer, D.K. Matlock, Iron Steel Technol. 5 (2008) 227–236.

    Google Scholar 

  44. T. Swarr, G. Krauss, Metall. Trans. A 7 (1976) 41–48.

    Article  Google Scholar 

  45. D.E. Kaputkin, L.M. Kaputkina, S.D. Prokoshkin, J. Phys. IV France 112 (2003) 275–278.

    Article  Google Scholar 

  46. H.Y. Li, X.W. Lu, W.J. Li, X.J. **, Metall. Mater. Trans. A 41 (2010) 1284–1300.

    Article  Google Scholar 

  47. S. Kumar, S.B. Singh, Mater. Charact. 196 (2023) 112561.

    Article  Google Scholar 

  48. G. Larzabal, N. Isasti, J.M. Rodriguez-Ibabe, P. Uranga, Metall. Mater. Trans. A 49 (2018) 946–961.

    Article  Google Scholar 

  49. T. Kang, Z. Zhao, J. Liang, J. Guo, Y. Zhao, Mater. Sci. Eng. A 771 (2020) 138584.

    Article  Google Scholar 

  50. N. Isasti, D. Jorge-Badiola, M.L. Taheri, P. Uranga, Met. Mater. Int. 20 (2014) 807–817.

    Article  Google Scholar 

  51. H.R. Ghazvinloo, A. Honarbakhsh-Raouf, A.R.K. Rashid, Metallurgist 59 (2015) 90–96.

    Article  Google Scholar 

  52. G. Chen, G. Xu, H.S. Zurob, H. Hu, X. Wan, Metall. Mater. Trans. A 50 (2019) 573–580.

    Article  Google Scholar 

  53. Y. Wang, K. Zhang, Z. Guo, N. Chen, Y. Rong, Mater. Sci. Eng. A 552 (2012) 288–294.

    Article  Google Scholar 

  54. X.C. **ong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, Scripta Mater. 68 (2013) 321–324.

    Article  Google Scholar 

  55. K. Zhang, M. Zhang, Z. Guo, N. Chen, Y. Rong, Mater. Sci. Eng. A 528 (2011) 8486–8491.

    Article  Google Scholar 

  56. J. Tian, W. Wang, G. Xu, X. Wang, M. Zhou, H. Zurob, Met. Mater. Int. 29 (2023) 1298–1310.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. 52104381) and the China Postdoctoral Science Foundation (No. 2023M732721) and also the help on microstructure analysis from Dr. Zhen Wang at the Analytical and Testing Center of Wuhan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-yu Tian.

Ethics declarations

Conflict of interest

The authors have no competing interests or conflicts of interest to declare that are relevant to the contents of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yj., Tian, Jy., Liu, M. et al. Effect of isothermal martensite and bainite transformation on microstructure and properties in a medium-carbon high-strength Q&P steel. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01216-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01216-3

Keywords

Navigation