Log in

Effect of nano-graphite on mechanical properties and oxidation resistance of ZrB2–SiC–graphite electrode ceramics

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

ZrB2-based ceramic composites were prepared by spark plasma sintering using ZrB2 powder prepared by molten salt method as raw material and SiC and nano-graphite as additives. The effects of nano-graphite addition on the physical properties and oxidation resistance of ZrB2-based ceramic samples were investigated. The results show that the addition of an appropriate amount of nano-graphite can effectively improve the density of ZrB2-based ceramic composites and improve the physical properties of the materials. The flexural strength of the ceramic sample with 8 vol.% nano-graphite reached 418.54 MPa, which was 53.14% higher than that of ZrB2–SiC ceramic material (273.31 MPa), and its oxidation resistance was also significantly improved. It demonstrats that the addition of an appropriate amount of nano-graphite can effectively improve the physical properties and oxidation resistance of ZrB2–SiC ceramic composites. Via prolonging its service life in application and promoting the development of ZrB2-based ceramic composites, it is of great significance for clean steel smelting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Daneshmand, M.H. Vini, F. Al-dolaimy, B.M. Ridha, A.H. Alsalamy, N. Nasajpour-Esfahani, M. Hekmatifar, J. Alloy. Compd. 965 (2023) 171376.

    Google Scholar 

  2. B.D. Karahan, Mater. Chem. Phys. 287 (2022) 126178.

    Google Scholar 

  3. Z. Wang, Z.J. Wu, G.D. Shi, Int. J. Refract. Met. Hard Mater. 29 (2011) 351–355.

    Google Scholar 

  4. M. Mor, M. Meiser, N. Langhof, A. Vinci, S. Failla, B. Alber-Laukant, S. Tremmel, S. Schafföner, D. Sciti, J. Eur. Ceram. Soc. 43 (2023) 5413–5424.

    Google Scholar 

  5. J.H. Yuan, W.M. Guo, Q.Y. Liu, Y. Zhang, L.X. Wu, Y. You, S.K. Sun, M.W. Bai, H.T. Lin, Ceram. Int. 47 (2021) 28008–28013.

    Google Scholar 

  6. A. Momozawa, R. Tu, T. Goto, Y. Kubota, H. Hatta, K. Komurasaki, Vacuum 88 (2013) 98–102.

    Google Scholar 

  7. M. Tiwari, A. Singh, V.K. Singh, Vacuum 214 (2023) 112199.

    Google Scholar 

  8. H.P. Yuan, J.G. Li, Q. Shen, L.M. Zhang, Int. J. Refract. Met. Hard Mater. 36 (2013) 225–231.

    Google Scholar 

  9. S.Q. Guo, J. Eur. Ceram. Soc. 29 (2009) 995–1011.

    Google Scholar 

  10. M.Y. **ang, J.F. Gu, W. Ji, J.J. **e, W.M. Wang, Y. **ong, Z.Y. Fu, Ceram. Int. 44 (2018) 8417–8422.

    Google Scholar 

  11. S. Yang, F. Chen, Q. Shen, L.M. Zhang, A. Huang, H.Z. Gu, Ceram. Int. 46 (2020) 26539–26547.

    Google Scholar 

  12. R.R Wang, J.H. Liu, W. Ji, Y.C. Wang, Z.Y. Fu, H. Wang, W.M. Wang, J.Y. Zhang, J.Q. Zhu, J. Alloy. Compd. 701 (2017) 279–287.

    Google Scholar 

  13. T.G. Aguirre, C.L. Cramer, E. Cakmak, M.J. Lance, R.A. Lowden, Results Mater. 11 (2021) 100217.

    Google Scholar 

  14. I. Farahbakhsh, Z. Ahmadi, M. Shahedi Asl, Ceram. Int. 43 (2017) 8411–8417.

    Google Scholar 

  15. Y. Zeng, J.H. Liu, F. Liang, H.Y. Xu, H.J. Zhang, S.W. Zhang, J. Am. Ceram. Soc. 102 (2019) 2426–2439.

    Google Scholar 

  16. J.W. Zimmermann, G.E. Hilmas, W.G. Fahrenholtz, R.B. Dinwiddie, W.D. Porter, H. Wang, J. Am. Ceram. Soc. 91 (2008) 1405–1411.

    Google Scholar 

  17. T.G. Aguirre, B.W. Lamm, C.L. Cramer, D.J. Mitchell, Ceram. Int. 48 (2022) 7344–7361.

    Google Scholar 

  18. X. Zhang, J.F. He, L. Han, Z. Huang, K. Xu, W.J. Cai, S.B. Wu, Q.L. Jia, H.J. Zhang, S.W. Zhang, J. Eur. Ceram. Soc. 43 (2023) 37–46.

    Google Scholar 

  19. N. Liao, D.C. Jia, Z.H. Yang, Y.W. Li, J. Phys. Chem. Solids 136 (2020) 109153.

    Google Scholar 

  20. A. Rezapour, Z. Balak, Mater. Chem. Phys. 241 (2020) 122284.

    Google Scholar 

  21. O.N. Grigoriev, A.V. Stepanenko, V.B. Vinokurov, I.P. Neshpor, T.V. Mosina, L. Silvestroni, J. Eur. Ceram. Soc. 41 (2021) 4720–4727.

    Google Scholar 

  22. X.H. Zhang, Y.M. An, J.C. Han, W.B. Han, G.D. Zhao, X.X. **, RSC Adv. 5 (2015) 47060–47065.

    Google Scholar 

  23. Y.M. An, K. Wan, Y. Yang, Y.N. Jia, Y.H. Cheng, J. Eur. Ceram. Soc. 43 (2023) 283–290.

    Google Scholar 

  24. L.Q. Duan, C. Xu, X.Q. Dai, Z.M. **ong, B. Zhang, Z.W. Zhang, C.A. Cui, A.M. **e, F. Wu, Mater. Des. 192 (2020) 108738.

    Google Scholar 

  25. F.L. Li, Y.N. Cao, J.H. Liu, H.J. Zhang, S.W. Zhang, Ceram. Int. 43 (2017) 7743–7750.

    Google Scholar 

  26. C. Wu, K. Bian, Z.W. Zhang, H.G. Li, S.H. **e, Ceram. Int. 49 (2023) 21788–21794.

    Google Scholar 

  27. M. Fattahi, A. Babapoor, S.A. Delbari, Z. Ahmadi, A. Sabahi Namini, M. Shahedi Asl, Ceram. Int. 46 (2020) 12400–12408.

    Google Scholar 

  28. F.L. Li, C. Tan, J.H. Liu, J.K. Wang, Q.L. Jia, H.J. Zhang, S.W. Zhang, Ceram. Int. 45 (2019) 9611–9617.

    Google Scholar 

  29. Y. Chen, C.J. Deng, C. Yu, J. Ding, H.X. Zhu, Ceram. Int. 44 (2018) 8710–8715.

    Google Scholar 

  30. W. Li, C.J. Deng, Y. Chen, X. Wang, C. Yu, J. Ding, H.X. Zhu, Ceram. Int. 48 (2022) 15227–15235.

    Google Scholar 

  31. Z.L. Liu, C.J. Deng, C. Yu, J. Ding, H.X. Zhu, Ceram. Int. 49 (2023) 29104–29113.

    Google Scholar 

  32. C.L. Kuang, X. Wang, Z.L. Liu, C.J. Deng, C. Yu, J. Ding, H.X. Zhu, Ceram. Int. 48 (2022) 33926–33933.

    Google Scholar 

  33. M. Velashjerdi, H. Sarpoolaky, A. Mirhabibi, Ceram. Int. 41 (2015) 12554–12559.

    Google Scholar 

  34. M.R. Li, C.M. Ke, J.H. Zhang, J. Alloy. Compd. 834 (2020) 155062.

    Google Scholar 

  35. J.H. Yuan, Q.Y. Liu, Y. You, L.Y. Zeng, M.W. Bai, L.R. Blackburn, W.M. Guo, H.T. Lin, Ceram. Int. 47 (2021) 15843–15848.

    Google Scholar 

  36. M. Shahedi Asl, B. Nayebi, A. Motallebzadeh, M. Shokouhimehr, Compos. B Eng. 175 (2019) 107153.

    Google Scholar 

  37. M.D. Alvari, M.G. Kakroudi, B. Salahimehr, R. Alaghmandfard, M. Shahedi Asl, M. Mohammadi, Ceram. Int. 47 (2021) 9627–9634.

    Google Scholar 

  38. J.L. **ao, J.F. Chen, Y.W. Wei, Y. Zhang, S.W. Zhang, N. Li, Ceram. Int. 45 (2019) 21099–21107.

    Google Scholar 

  39. Y. Chen, J. Ding, C.J. Deng, C. Yu, Ceram. Int. 49 (2023) 26871–26878.

    Google Scholar 

  40. C.H. Mao, X.R. Ren, X. Ji, L.H. Xu, X.Y. Wang, N.N. Zhu, P. Zhang, P.Z. Feng, Ceram. Int. 49 (2023) 32913–32922.

    Google Scholar 

  41. Y.X. Luo, X. Wang, Z.L. Liu, C. Yu, C.J. Deng, J. Ding, J. Mater. Res. Technol. 27 (2023) 3632–3643.

    Google Scholar 

  42. D. Chen, H.Z. Gu, A. Huang, Y.W. Deng, Ceram. Int. 45 (2019) 4147–4151.

    Google Scholar 

  43. Y.X. Luo, X. Wang, Z.L. Liu, C. Yu, C.J. Deng, J. Ding, J. Alloy. Compd. 975 (2024) 172937.

    Google Scholar 

  44. D. Gao, Y. Zhang, C.L. Xu, Y. Song, X.B. Shi, Ceram. Int. 39 (2013) 3113–3119.

    Google Scholar 

  45. N. Liao, Y.W. Li, J.B. Shan, T.B. Zhu, S.B. Sang, D.C. Jia, Ceram. Int. 44 (2018) 3319–3325.

    Google Scholar 

  46. C. Yu, B. Dong, Y.F. Chen, B.Y. Ma, J. Ding, C.J. Deng, H.X. Zhu, J.H. Di, J. Iron Steel Res. Int. 29 (2022) 1052–1062.

    Google Scholar 

  47. R. Hassan, K. Balani, Corros. Sci. 177 (2020) 109024.

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support from the project supported by the Natural Science Foundation of Hubei Province (Grant No. 2023BAB106), the National Natural Science Foundation of China (Grant No. U20A20239), and the Scientific Research Project of Education Department of Hubei Province (D20211104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ding.

Ethics declarations

Conflict of interest

The authors state that they have no known competing financial interests or personal relationships.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Bl., Kuang, Cl., Liu, Zl. et al. Effect of nano-graphite on mechanical properties and oxidation resistance of ZrB2–SiC–graphite electrode ceramics. J. Iron Steel Res. Int. 31, 1502–1513 (2024). https://doi.org/10.1007/s42243-023-01174-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01174-2

Keywords

Navigation