Log in

Effect of Mo and cold forging deformation on strength and ductility of cobalt-based alloy L605

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Mo element was added to cobalt-based alloy L605, and cold forging deformation was performed. The effects of the addition and cold forging deformation on the microstructure and mechanical properties of the alloy were studied by thermodynamic calculation, electron backscatter diffraction, transmission electron microscopy, and X-ray diffraction. The stacking fault energy (SFE) of the alloy decreased after the addition, and the formation of stacking faults and intersections were promoted to improve the strength and hardness. The tensile strength of the alloy with Mo increased from 1190 to 1702 MPa after 24% cold deformation, producing significant work hardening. The strengthening mechanism is strain-induced martensitic transformation (SIMT) and deformation twinning. The alloy, combined with Mo and after 24% deformation, had both high strength and ductility in comparison with the original cobalt-based alloy L605. This is attributed to the lower SFE which caused the increase in stacking fault density. During the tensile process, the ε-hcp phase was easily generated at the stacking fault to reduce the stress concentration and increase the ductility. Controlling SIMT by adjusting the density of stacking faults can improve the mechanical properties of cobalt-based alloys. The ε-hcp phase, the interaction between deformation twins and dislocations, and the interaction between ε-hcp phases during cold forging deformation caused local stress concentration, lowering ductility and toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. Hryniewicz, R. Rokicki, K. Rokosz, Mater. Lett. 62 (2008) 3073–3076.

    Article  CAS  Google Scholar 

  2. D. Migas, G. Moskal, H. Myalska, T. Mikuszewski, Corros. Sci. 192 (2021) 109787.

    Article  CAS  Google Scholar 

  3. M. Mori, K. Yamanaka, S. Sato, S. Tsubaki, K. Satoh, M. Kumagai, M. Imafuku, T. Shobu, A. Chiba, J. Mech. Behav. Biomed. Mater. 90 (2019) 523–529.

    Article  CAS  PubMed  Google Scholar 

  4. B.S. Lee, Y. Koizumi, H. Matsumoto, A. Chiba, Mater. Sci. Eng. A 611 (2014) 263–273.

    Article  CAS  Google Scholar 

  5. T.L. Achmad, W. Fu, H. Chen, C. Zhang, Z.G. Yang, J. Alloy. Compd. 694 (2017) 1265–1279.

    Article  CAS  Google Scholar 

  6. K. Yamanaka, M. Mori, A. Chiba, Metall. Mater. Trans. A 43 (2012) 4875–4887.

    Article  CAS  Google Scholar 

  7. C. Liu, H. Jiang, J. Dong, Z. Yao, Y. Niu, Mater. Lett. 267 (2020) 127533.

    Article  CAS  Google Scholar 

  8. S. Cai, J.E. Schaffer, D. Huang, J. Gao, Y. Ren, Metall. Mater. Trans. A 49 (2018) 2573–2577.

    Article  CAS  Google Scholar 

  9. D. Sorensen, B.Q. Li, W.W. Gerberich, K.A. Mkhoyan, Acta Mater. 63 (2014) 63–72.

    Article  ADS  CAS  Google Scholar 

  10. S. Yanagihara, K. Ueki, K. Ueda, M. Nakai, T. Nakano, T. Narushima, Metall. Mater. Trans. A 52 (2021) 4137–4145.

    Article  CAS  Google Scholar 

  11. Y. Koizumi, S. Suzuki, K. Yamanaka, B.S. Lee, K. Sato, Y. Li, S. Kurosu, H. Matsumoto, A. Chiba, Acta Mater. 61 (2013) 1648–1661.

    Article  ADS  CAS  Google Scholar 

  12. A.M. Beltran, C.T. Sims, N.S. Stoloff, W.C. Hagel (Eds.), Superalloys II, Wiley, New York, USA, 1987.

    Google Scholar 

  13. Z.Y. Zhu, L. Meng, L. Chen, Rare Met. 39 (2020) 241–249.

    Article  CAS  Google Scholar 

  14. K. Ueki, M. Abe, K. Ueda, M. Nakai, T. Nakano, T. Narushima, Mater. Sci. Eng. A 739 (2019) 53–61.

    Article  CAS  Google Scholar 

  15. G.B. Olson, M. Cohen, Metall. Mater. Trans. A 7 (1976) 1897–1904.

    ADS  Google Scholar 

  16. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387–389 (2004) 158–162.

    Article  Google Scholar 

  17. M. Mori, K. Yamanaka, H. Matsumoto, A. Chiba, Mater. Sci. Eng. A 528 (2010) 614–621.

    Article  Google Scholar 

  18. M. Mori, K. Yamanaka, S. Sato, S. Tsubaki, K. Satoh, M. Kumagai, M. Imafuku, T. Shobu, A. Chiba, Acta Biomater. 28 (2015) 215–224.

    Article  CAS  PubMed  Google Scholar 

  19. H.Z. Zhao, Z.S. You, N.R. Tao, L. Lu, Acta Mater. 210 (2021) 116830.

    Article  CAS  Google Scholar 

  20. K. Lu, F.K. Yan, H.T. Wang, N.R. Tao, Scripta Mater. 66 (2012) 878–883.

    Article  CAS  Google Scholar 

  21. T. Wan, Z. Cheng, L. Bu, L. Lu, Scripta Mater. 201 (2021) 113975.

    Article  CAS  Google Scholar 

  22. A. Matsushita, Y. Mine, K. Takashima, Scripta Mater. 201 (2021) 113976.

    Article  CAS  Google Scholar 

  23. H. Matsumoto, S. Kurosu, B.S. Lee, Y. Li, A. Chiba, Scripta Mater. 63 (2010) 1092–1095.

    Article  CAS  Google Scholar 

  24. K. Yamanaka, M. Mori, K. Yoshida, K. Kuramoto, A. Chiba, J. Mech. Behav. Biomed. Mater. 60 (2016) 38–47.

    Article  CAS  PubMed  Google Scholar 

  25. M. Mori, K. Yamanaka, A. Chiba, J. Mech. Behav. Biomed. Mater. 55 (2015) 201–214.

    Article  PubMed  Google Scholar 

  26. B.S. Lee, H. Matsumoto, A. Chiba, Mater. Lett. 65 (2011) 843–846.

    Article  CAS  Google Scholar 

  27. M.J. Hÿtch, E. Snoeck, R. Kilaas, Ultramicroscopy 74 (1998) 131–146.

    Article  Google Scholar 

  28. Y.C. Zhang, R. Song, Y.J. Wang, C.H. Cai, H.B. Wang, K.K. Wang, Scripta Mater. 229 (2023) 115372.

    Article  CAS  Google Scholar 

  29. Y. Zhang, R. Song, Y. Wang, C. Cai, H. Wang, K. Wang, Mater. Des. 227 (2023) 111719.

    Article  CAS  Google Scholar 

  30. N. Bergeon, G. Guenin, C. Esnouf, Mater. Sci. Eng. A 242 (1998) 77–86.

    Article  Google Scholar 

  31. J.L. Putaux. J.P. Chevalier, Acta Mater. 44 (1996) 1701–1716.

    Article  ADS  CAS  Google Scholar 

  32. K. Yamanaka, M. Mori, Y. Koizumi, A. Chiba, J. Mech. Behav. Biomed. Mater. 32 (2014) 52–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (Grant No. NJYT23115) and the Inner Mongolia Natural Science Foundation (Grant No. 2022MS05039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-hua Gong.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zl., Gong, Zh., Li, Q. et al. Effect of Mo and cold forging deformation on strength and ductility of cobalt-based alloy L605. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-023-01159-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01159-1

Keywords

Navigation