Log in

An experimental study on effects of temperature gradient on microstructure of a 308L stainless steel manufactured by directed energy deposition

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of spatial temperature gradient on the microstructural evolution of a 308L stainless steel during the directed energy deposition (DED) process was experimentally investigated. A novel cooling system was designed and incorporated to a DED system in order to control the temperature gradient along the deposition direction during solidification. During deposition, the workpiece was placed on a lifting platform, and as the deposition process proceeded, the platform and workpiece were gradually lowered into cooling water so that the temperature gradient along the deposition direction could be controlled and maintained stable during the deposition process. The microstructure characterization results indicated that a deposition strategy with higher G and G/R values (where G is temperature gradient and R is solidification rate) produced finer cellular grains that were better aligned with the deposition direction, while a deposition strategy with lower G and G/R values produced columnar grains with larger primary arm spacing and less aligned with the deposition direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, E.A. Jägle, Mater. Sci. Eng. A 772 (2020) 138633.

    Article  Google Scholar 

  2. N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, Addit. Manuf. 8 (2015) 12–35.

    Google Scholar 

  3. M.J. Bermingham, D.H. StJohn, J. Krynen, S. Tedman-Jones, M.S. Dargusch, Acta Mater. 168 (2019) 261–274.

    Article  Google Scholar 

  4. S. Li, J.Y. Li, Z.W. Jiang, Y. Cheng, Y.Z. Li, S. Tang, J.Z. Leng, H.X. Chen, Y. Zou, Y.H. Zhao, J.P. Oliveira, Y. Zhang, K.H. Wang, Addit. Manuf. 57 (2022) 102958.

    Google Scholar 

  5. D. Wang, C. Song, Y. Yang, Y. Bai, Mater. Des. 100 (2016) 291–299.

    Article  Google Scholar 

  6. B. Attard, S. Cruchley, C. Beetz, M. Megahed, Y.L. Chiu, M.M. Attallah, Addit. Manuf. 36 (2020) 101432.

    Google Scholar 

  7. W.E. Frazier, J. Mater. Eng. Perform. 23 (2014) 1917–1928.

    Article  Google Scholar 

  8. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, Int. Mater. Rev. 61 (2016) 315–360.

    Article  Google Scholar 

  9. X. Wu, J. Liang, J. Mei, C. Mitchell, P.S. Goodwin, W. Voice, Mater. Des. 25 (2004) 137–144.

    Article  Google Scholar 

  10. E. MacDonald, R. Wicker, Science 353 (2016) aaf2093.

  11. S. Kou, Welding metallurgy, 2nd Ed., John Wiley & Sons, Hoboken, New Jersey, USA, 2003.

    Google Scholar 

  12. Y.H. Kok, X.P. Tan, N.H. Loh, S.B. Tor, C.K. Chua, Virtual Phys. Prototyp. 11 (2016) 183–191.

    Article  Google Scholar 

  13. D. Svetlizky, M. Das, B. Zheng, A.L. Vyatskikh, S. Bose, A. Bandyopadhyay, J.M. Schoenung, E.J. Lavernia, N. Eliaz, Mater. Today 49 (2021) 271–295.

    Article  Google Scholar 

  14. K. Li, T. Yang, N. Gong, J. Wu, X. Wu, D.Z. Zhang, L.E. Murr, J. Alloy. Compd. 965 (2023) 171390.

    Article  Google Scholar 

  15. K. Li, W. Chen, N. Gong, H. Pu, J. Luo, D.Z. Zhang, L.E. Murr, J. Mater. Res. Technol. 24 (2023) 9369–9412.

    Article  Google Scholar 

  16. M. Froend, V. Ventzke, F. Dorn, N. Kashaev, B. Klusemann, J. Enz, Mater. Sci. Eng. A 772 (2020) 138635.

    Article  Google Scholar 

  17. J. Chen, H. Liu, Z. Peng, J. Tang, Coatings 12 (2022) 58.

    Article  Google Scholar 

  18. J.P. Oliveira, A.D. LaLonde, J. Ma, Mater. Des. 193 (2020) 108762.

    Article  Google Scholar 

  19. A. Saboori, D. Gallo, S. Biamino, P. Fino, M. Lombardi, Appl. Sci. 7 (2017) 883.

    Article  Google Scholar 

  20. Q. Jia, D. Gu, J. Alloy. Compd. 585 (2014) 713–721.

    Article  Google Scholar 

  21. N. Lu, Z. Lei, X. Yu, J. Bi, Y. Chen, Addit. Manuf. 48 (2021) 102429.

    Google Scholar 

  22. M. Zhang, Y. Zhou, C. Huang, Q. Chu, W. Zhang, J. Li, Materials 11 (2018) 2288.

    Article  Google Scholar 

  23. C. Ji, K. Li, J. Zhan, S. Bai, B. Jiang, L.E. Murr, J. Mater. Process. Technol. 319 (2023) 118084.

    Article  Google Scholar 

  24. J. Shao, G. Yu, S. Li, X. He, C. Tian, B. Dong, J. Alloy. Compd. 898 (2022) 162976.

    Article  Google Scholar 

  25. J. Nie, C. Chen, L. Liu, X. Wang, R. Zhao, S. Shuai, J. Wang, Z. Ren, J. Mater. Sci. Technol. 62 (2021) 148–161.

    Article  Google Scholar 

  26. V.T. Le, D.S. Mai, H. Paris, J. Manuf. Process. 62 (2021) 18–27.

    Article  Google Scholar 

  27. D.M. Stefanescu, R. Ruxanda, Fundamentals of solidification, metallography and microstructures, ASM International, Geauga, Ohio, USA, 2004.

  28. G. Lian, K. Yue, J. Zeng, M. Feng, R. Lan, L. Kong, Materials 16 (2023) 1704.

    Article  Google Scholar 

  29. S.S. Al-Bermani, M.L. Blackmore, W. Zhang, I. Todd, Metall. Mater. Trans. A 41 (2010) 3422–3434.

    Article  Google Scholar 

  30. H. Helmer, A. Bauereiß, R.F. Singer, C. Körner, Mater. Sci. Eng. A 668 (2016) 180–187.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2022YFB4601000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Dai or Yi-wei Sun.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, T., Gu, Dy., Qiu, Yw. et al. An experimental study on effects of temperature gradient on microstructure of a 308L stainless steel manufactured by directed energy deposition. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-023-01158-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01158-2

Keywords

Navigation