Log in

A new method for evaluating wedges of steel plates and strips

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To overcome the inaccuracy problem of the traditional wedge evaluation of steel plates and strips caused by the randomness of the thicknesses of two local points and improve the reliability of the wedge index, the double-centroid method for the wedge evaluation was proposed, and a model based on the centroid theory was established. Meanwhile, an integral model for the discrete thickness values of the cross-section profiles was derived. The discussion focused on the distinct characteristics of the two-point method, asymmetric method, and double-centroid method in evaluating the asymmetric distribution of cross-sections. The three methods were employed to evaluate the wedge values of both the theoretical and measured cross-sections of steel plates and strips, and the accuracies of three wedge evaluation models were analyzed and discussed. The results showed that the double-centroid method objectively reflects the degree and variation characteristics of the wedge values of the cross-sections of steel plates and strips, and this method is feasible, reliable, and outstanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. V.B. Ginzburg, High-quality steel rolling: theory and practice, Metallurgical Industry Press, Bei**g, China, 2000.

  2. M. Ataka, ISIJ Int. 55 (2015) 89–102.

    Article  Google Scholar 

  3. Z. Wei, G.Q. Wang, J. Sun, W. Peng, D.H. Zhang, Steel Res. Int. (2023) https://doi.org/10.1002/srin.202200919.

    Article  Google Scholar 

  4. Y. Kang, Y. Jang, Y. Choi, D. Lee, S. Won, ISIJ Int. 55 (2015) 851–857.

    Article  Google Scholar 

  5. T. Shiraishi, H. Ibata, A. Mizuta, S. Nomura, E. Yoneda, K. Hirata, ISIJ Int. 31 (1991) 583–587.

    Article  Google Scholar 

  6. S. M. Belskiy, I.I. Shopin, IOP Conf. Ser.: Mater. Sci. Eng. 969 (2020) 012072.

    Google Scholar 

  7. Y. Zhang, Q. Yang, A.R. He, D.F. Guo, Y. Zhao, C.C. Wen, Iron and Steel 47 (2012) No. 8, 43–47.

    Google Scholar 

  8. S.M. Bel’skii, Y.A. Mukhin, S.I. Mazur, A.I. Goncharov, Steel Trans. 43 (2013) 313–316.

    Article  Google Scholar 

  9. X.J. Chai, J. Zhang, H.B. Li, Y.Z. Zhou, H.H. Ma, P.W. Zhang, Chin. J. Eng. 38 (2016) 726–733.

    Google Scholar 

  10. A.R. He, Steel Rolling 39 (2022) No. 3, 1–10.

    MathSciNet  Google Scholar 

  11. C.L. Zhang, B. Gong, C. Wang, Z.Y. Liu, Adv. Eng. Res. 154 (2018) 482–485.

    Google Scholar 

  12. S.J. Hardy, D.L. Biggs, K.J. Brown, Ironmak. Steelmak. 29 (2002) 245–252.

    Article  Google Scholar 

  13. X.Q. Zhao, Y.L. Liu, S. Huang, Appl. Mech. Mater. 44-47 (2011) 1039–1043.

    Google Scholar 

  14. J.N. Aoh, H.K. Hsu, W.T. Dai, C.Y. Lin, Y.L. Yeh, Key Eng. Mater. 626 (2014) 570–575.

    Article  Google Scholar 

  15. D.Y. Gong, J.Z. Xu, Z.Y. Jiang, X.M. Zhang, X.H. Liu, G.D. Wang, Int. J. Mod. Phys. B 22 (2008) 5734–5739.

    Article  Google Scholar 

  16. X.P. Wang, A.R. He, J. Shao, S.S Ma, J.H. Liu, J.X. Chen, Metallurgical Industry Automation 45 (2021) No. 2, 45–53.

    Google Scholar 

  17. A. Kainz, T. Pumhoessel, M. Kurz, M. Widder, L. Aigner, K. Zeman, IFAC-PapersOnLine 49 (2016) 238–243.

    Article  Google Scholar 

  18. H.B. Li, J. Zhang, J.G. Cao, S.S. Zhang, Z.M. Wang, Chin. J. Eng. 31 (2009) 487–491.

    Google Scholar 

  19. A. Shkarin, S. Belskiy, V. Pimenov, in: 2020 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), IEEE, Lipetsk, Russia, 2000, pp. 727–730.

  20. D.C. Wang, Y.L. Wu, H.M. Liu, Iron and Steel 50 (2015) No. 10, 37–44.

    Google Scholar 

  21. L.J. Li, H.B. **e, T.W. Liu, M.S. Huo, X.S. Li, X. Liu, E.R. Wang, J.X. Li, H.Q. Liu, L. Sun, Z.Y. Jiang, Int. J. Adv. Manuf. Technol. 120 (2022) 3683–3704.

    Article  Google Scholar 

  22. H. Liu, T.Q. Liu, M.H. Miao, J. Iron Steel Res. 24 (2012) No. 2, 59–62.

    Article  Google Scholar 

  23. D. Xu, Y. Liu, X.C. Wang, Q. Yang, Z.Y. Dai, X.D. Wang, Ironmak. Steelmak. 47 (2019) 781–789.

    Article  Google Scholar 

  24. X.T. Zheng, Research on profile control in 2250 mm hot strip mill, University of Science and Technology Bei**g, Bei**g, China, 2015.

    Google Scholar 

  25. X.B. Ma, D.C. Wang, H.M. Liu, C.C. Wen, Y. Zhou, Ironmak. Steelmak. 45 (2018) 66–75.

    Article  Google Scholar 

  26. H.N. He, Y. Liu, Q. Yang, X.C. Wang, S. Wang, Q.H. Wang, Ironmak. Steelmak. 47 (2019) 587–595.

    Article  Google Scholar 

  27. X.C. Wang, Q. Yang, Y.Z. Sun, J. Iron Steel Res. Int. 22 (2015) 185–191.

    Article  Google Scholar 

  28. H.N. He, J. Shao, X.C. Wang, Q. Yang, Y. Liu, D. Xu, Y.Z. Sun, J. Iron Steel Res. Int. 28 (2021) 279–290.

    Article  Google Scholar 

  29. X.B. Ma, D.C. Wang, H.M. Liu, S. Zhang, Metall. Res. Technol. 116 (2019) 105.

    Article  Google Scholar 

  30. X.B. Ma, B. Ma, J.J. Li, P. Chen, Y.H. Peng, Z.K. Ren, Ironmak. Steelmak. 50 (2023) 921–935.

    Article  Google Scholar 

  31. D.C. Wang, Y.H. Xu, T.Y. Zhang, X.B. Ma, H.M. Liu, Metall. Res. Technol. 118 (2021) 303.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52305405), the Natural Science Foundation Research Program of Shanxi Province (Grant No. 202203021222121), the Major Project of Science and Technology of Shanxi Province (Grant No. 20181102016), the Chinese Postdoctoral Science Foundation (Grant No. 2021M702544), the Central Government Guides the Special Fund Projects of Local Scientific and Technological Development (YDZX20191400002149), the Open Project of Research Institute of Hai’an-Taiyuan University of Technology (Grant No. 2023HA-TYUTKFYF008), and the School Fund of Taiyuan University of Technology (Grant No. 2022QN007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao-bao Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Xb., Ma, Xx., Wang, T. et al. A new method for evaluating wedges of steel plates and strips. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-023-01128-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01128-8

Keywords

Navigation