Log in

Effect of quaternary basicity on reduction behavior of iron-bearing dust pellets

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The treatment of iron-bearing dusts and sludges by the rotary hearth furnace process has the advantage of sufficient utilization of valuable metals and a high impurity removal rate, but the lower strength of the metallized product needs to be addressed. The effects of quaternary basicity R4 (w(CaO + MgO)/w(SiO2 + Al2O3)) on the reduction behavior and physical and chemical properties of metallized pellets, including phase composition, compressive strength, microstructure and soft melting area, were investigated with FactSage thermodynamic software and experiments. The strength of metallized pellets depended on the gangue composition, such as CaO, MgO, Al2O3 and SiO2, due to the altered chemical composition, physical phase composition, microscopic morphology and stability of the slag phase. The reduction of carbon-bearing pellets was significantly promoted by suitable basicity. The lower basicity (R4 < 1.4) facilitated the formation of low melting point iron-containing compounds from SiO2 and Al2O3 with FeO, resulting in increased liquid phase generation, but lower metallization rate, due to the hindered precipitation and growth of iron grains. Interestingly, the higher basicity (R4 > 1.8) also increased the amount of liquid phase and improved the strength of the pellets, due to the granular iron crystals bonded into sheets. Notably, the main component of the liquid phase in high-basicity conditions was calcium ferrite. Although the additional amount of liquid phase was beneficial to the strength of the metallized pellets, calcium disilicate was formed at R4 = 1.6, resulting in a reduction in the compressive strength of the pellets to 1521.9 N/pellet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L.K. Hong, J.J. Gao, Y.H. Qi, H.F. Wang, J. Iron Steel Res. 30 (2018) 703–709.

    Google Scholar 

  2. C. Geng, H.J. Wang, W.T. Hu, L. Li, C.S. Shi, J. Iron Steel Res. Int. 24 (2017) 991–997.

    Article  Google Scholar 

  3. L.X. Qian, T. Yang, H.M. Long, L. Ding, C.C. Xu, ACS Sustainable Chem. Eng. 9 (2021) 16373–16383.

    Article  Google Scholar 

  4. J.S. Wang, Y. Li, H.X. Feng, Q.G. Xue, X.F. She, G. Wang, H.B. Zuo, Chin. J. Eng. 43 (2021) 1737–1749.

    Google Scholar 

  5. L. Ding, Y.F. Wang, L.X. Qian, P.Y. Qi, X. Meng, H.M. Long, Fuel 338 (2023) 127268.

    Article  Google Scholar 

  6. W. Lv, M. Gan, X.H. Fan, Z.Y. Ji, X.L. Chen, J.W. Yao, T. Jiang, JOM 71 (2019) 3173–3180.

    Article  Google Scholar 

  7. Z. Chen, R.Q. Zheng, D.C. Ju, R. Mao, H. Ma, H.B. Peng, W.T. Du, J. Sustain. Metall. 8 (2022) 1001–1013.

    Article  Google Scholar 

  8. S. Kelebek, S. Yörük, B. Davis, Miner. Eng. 17 (2004) 285–291.

    Article  Google Scholar 

  9. Y. Li, H.X. Feng, J.S. Wang, X.F. She, G. Wang, H.B. Zuo, Q.G. Xue, J. Clean. Prod. 367 (2022) 132909.

    Article  Google Scholar 

  10. J.X. Zhang, C. Yang, F.S. Niu, S.L. Gao, J.J. Dong, Minerals 11 (2021) 1080.

    Article  Google Scholar 

  11. J.X. Zhang, W.G. Sun, F.S. Niu, L. Wang, Y.W. Zhao, M.M. Han, Int. J. Heat Technol. 36 (2018) 229–236.

    Article  Google Scholar 

  12. F.S. Niu, S.T. He, J.X. Zhang, C. Wen, Metals 12 (2022) 1856.

    Article  Google Scholar 

  13. Y.D. **e, W.L. **ong, J.X. Yu, J.Q. Tang, R.A. Chi, Process Saf. Environ. Prot. 116 (2018) 340–346.

    Article  Google Scholar 

  14. C. Sierra, J. Martínez, J.M. Menéndez-Aguado, E. Afif, J.R. Gallego, J. Hazard. Mater. 248–249 (2013) 194–201.

    Article  Google Scholar 

  15. N. Ma, J. Clean. Prod. 112 (2016) 4497–4504.

    Article  Google Scholar 

  16. A. Andersson, H. Ahmed, J. Rosenkranz, C. Samuelsson, B. Björkman, ISIJ Int. 57 (2017) 262–271.

    Article  Google Scholar 

  17. D.J.C. Stewart, A.R. Barron, Resour. Conserv. Recycl. 157 (2020) 104746.

    Article  Google Scholar 

  18. M.H. Morcali, O. Yucel, A. Aydin, B. Derin, J. Min. Metall. Sect. B 48 (2012) 173–184.

    Article  Google Scholar 

  19. D.Q. Zhu, D.Z. Wang, J. Pan, H.Y. Tian, Y.X. Xue, Powder Technol. 380 (2021) 273–281.

    Article  Google Scholar 

  20. D.Z. Wang, D.Q. Zhu, J. Pan, Z.Q. Guo, H.Y. Tian, Y.X. Xue, J. Iron Steel Res. Int. 29 (2022) 1559–1572.

    Article  Google Scholar 

  21. D.Z. Wang, D.Q. Zhu, J. Pan, Z.Q. Guo, C.C. Yang, X. Wang, T. Dong, JOM 74 (2022) 634–643.

    Article  Google Scholar 

  22. X.F. She, J.S. Wang, G. Wang, Q.G. Xue, X.X. Zhang, J. Iron Steel Res. Int. 21 (2014) 488–495.

    Article  Google Scholar 

  23. X. **ao, S.F. Zhang, F. Sher, J.B. Chen, Y.T. **n, Z.X. You, L.Y. Wen, M.L. Hu, G.B. Qiu, J. Sustain. Metall. 7 (2021) 340–357.

    Article  Google Scholar 

  24. I.F. Kurunov, Metallurgist 55 (2012) 634–639.

    Article  Google Scholar 

  25. B.P. Yur'ev, V.A. Dudko, Mater. Sci. Forum 1052 (2022) 467–472.

    Article  Google Scholar 

  26. R. Mao, F. Wang, H. **, S.D. Mao, Iron and Steel 55 (2020) No. 8, 199–205.

    Google Scholar 

  27. C. Peng, J.F. Fan, Iron and Steel 54 (2019) No. 2, 97–100.

    Google Scholar 

  28. E.H. Wu, R. Zhu, S.L. Yang, L. Ma, J. Li, J. Hou, J. Iron Steel Res. Int. 23 (2016) 655–660.

    Article  Google Scholar 

  29. R. Mao, L.Q. Ren, P. Du, F. Wang, J. Iron Steel Res. 29 (2017) 357–363.

    Google Scholar 

  30. H.Y. He, H.L. Liu, Y.F. Cui, Y. Li, J. Ding, J. Iron Steel Res. 33 (2021) 196–201.

    Google Scholar 

  31. W. Zhang, F. Wang, N. Li, ISIJ Int. 61 (2021) 1915–1926.

    Article  Google Scholar 

  32. S. Li, Z.S. Kang, W.C. Liu, Y.C. Lian, H.S. Yang, J. Sustain. Metall. 7 (2021) 126–135.

    Article  Google Scholar 

  33. S.F. Zhou, H.Y. Zheng, Y. Dong, X. Jiang, Q.J. Gao, M.F. Shen, Iron and Steel 56 (2021) No. 6, 15–20+27.

    Google Scholar 

  34. W. Chen, X. Wang, Y. Lei, Y. Li, S.Q. He, Z.H. Liao, Iron and Steel 55 (2020) No. 9, 11–15.

    Google Scholar 

  35. N. Li, F. Wang, L.M. Pan, J. Cent. South Univ. 29 (2022) 296–312.

    Article  Google Scholar 

  36. N. Li, F. Wang, W. Zhang, Metall. Res. Technol. 118 (2021) 209.

    Article  Google Scholar 

  37. R.F. Wei, J.X. Li, J.M. Li, H.M. Long, P. Wang, G. Gao, G.P. Lin, Chin. J. Process Eng. 11 (2011) 429–435.

    Google Scholar 

  38. Y.G. Ding, J.S. Wang, X.F. She, G. Wang, Q.G. Xue, J. Iron Steel Res. Int. 20 (2013) 28–33.

    Article  Google Scholar 

  39. J. Ding, H.Y. He, Z.Y. Tang, Y. Li, H.L. Liu, J. Wuhan Univ. Sci. Technol. 44 (2021) 7–12.

    Google Scholar 

  40. Y.S. Lee, D.W. Ri, S.H. Yi, I. Sohn, ISIJ Int. 52 (2012) 1454–1462.

    Article  Google Scholar 

  41. H.C. Chuang, W.S. Hwang, S.H. Liu, Mater. Trans. 50 (2009) 1448–1456.

    Article  Google Scholar 

  42. Q.M. Meng, J.X. Li, R.F. Wei, H.M. Long, T.J. Chun, P. Wang, Z.X. Di, L. Dessbesell, C.B. Xu, J. Iron Steel Res. Int. 25 (2018) 1105–1112.

    Article  Google Scholar 

  43. S. Mishra, G.G. Roy, Ironmak. Steelmak. 45 (2018) 426–433.

    Article  Google Scholar 

  44. D.C. Fan, W. Ni, A.Y. Yan, J.Y. Wang, W.H. Cui, J. Iron Steel Res. Int. 22 (2015) 686–693.

    Article  Google Scholar 

  45. E.H. Wu, J. Hou, J. Li, L. Ma, S.L. Yang, Iron and Steel 53 (2018) No. 1, 24–28.

    Google Scholar 

  46. S. Zhang, W. Ren, J.L. Li, X.F. Zhang, Metall. Res. Technol. 114 (2017) 101.

    Article  Google Scholar 

  47. J. Li, H.F. An, W.X. Liu, A.M. Yang, M.S. Chu, J. Iron Steel Res. Int. 27 (2020) 239–247.

    Article  Google Scholar 

  48. H.Y. Yu, X.L. Pan, B.W. Liu, B. Wang, S.W. Bi, J. Iron Steel Res. Int. 21 (2014) 990–994.

    Article  Google Scholar 

  49. S. Ferreira, A. Cores, J.I. Robla, L.F. Verdeja, I. Ruiz-Bustinza, F. García-Carcedo, J. Mochon, Steel Res. Int. 85 (2014) 261–272.

    Article  Google Scholar 

  50. Y.X. Zhao, Z.X. Zhang, J.Y. Zhang, F.P. Yue, J.S. Wang, G. Wang, Sinter. Pelletiz. 42 (2017) No. 4, 19–22+53.

    Google Scholar 

  51. G. Wang, Q.G. Xue, J.S. Wang, Thermochim. Acta 621 (2015) 90–98.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful acknowledges support from the Outstanding Youth Fund of Anhui Province (Grant No. 2208085J19) and the National Key Research and Development Program of China (Grant No. 2022YFC3901405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-ming Long.

Ethics declarations

Conflict of interest

We declare that there are no known conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., An, Js., Li, Xw. et al. Effect of quaternary basicity on reduction behavior of iron-bearing dust pellets. J. Iron Steel Res. Int. 30, 1356–1366 (2023). https://doi.org/10.1007/s42243-023-00985-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00985-7

Keywords

Navigation