Log in

Flow stress and constitutive relations of ship plate steel continuous casting slab with solidification end reduction process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to describe the thermal–mechanical behavior of the ship plate steel continuous casting slab during solidification end heavy reduction (HR) process accurately, its constitutive behavior was investigated by a single-pass thermal compression experiment. According to the deformation features of wide thick continuous casting slab with HR, the simulation temperature ranged from 1173 to 1573 K with strain rates of 0.0001, 0.001, 0.01 and 0.1 s−1. Three different constitutive models, the modified Johnson–Cook (JC) model, the modified Zerilli–Armstrong (ZA) model and the Arrhenius model, were established according to the obtained true stress–strain curves. The average relative error of the modified JC model, the modified ZA model and the Arrhenius model are 10.82%, 9.96% and 6.21%, respectively. Considering the obvious softening effect of the flow curve at a low strain rate, the secondary softening factor under the interaction of low strain rate and the temperature was introduced in the original Arrhenius model. Compared to the Arrhenius model, the modified Arrhenius model error decreased from 6.21% to 4.73%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.H. Wu, C. Ji, M.Y. Zhu, Metall. Mater. Trans. B 50 (2019) 2867–2883.

    Article  Google Scholar 

  2. R. Guan, C. Ji, C.H. Wu, M.Y. Zhu, Int. J. Heat Mass Trans. 141 (2019) 503–516.

    Article  Google Scholar 

  3. C.H. Wu, C. Ji, M.Y. Zhu, J. Mater. Process. Technol. 271 (2019) 651–659.

    Article  Google Scholar 

  4. R. Guan, C. Ji, C.H. Wu, M.Y. Zhu, Metall. Mater. Trans. B 49 (2018) 2571–2583.

    Article  Google Scholar 

  5. Q. Zhou, C. Ji, M.Y. Zhu, Mater. Res. Express 6 (2020) 1265f2.

    Article  Google Scholar 

  6. C. Zhang, L.W. Zhang, W.F. Shen, C.R. Liu, Y.N. **a, R.Q. Li, Mater. Des. 90 (2016) 804–814.

    Article  Google Scholar 

  7. G.R. Johnson, W.H. Cook, in: Proc. 7th Inf. Sympo. Ballistics, The Hague, The Netherlands, 1983, pp. 541–547.

  8. F.J. Zerilli, R.W. Armstrong, J. Appl. Phys. 68 (1990) 1580–1591.

    Article  Google Scholar 

  9. A. He, G.L. **e, H.L. Zhang, X.T. Wang, Mater. Des. 52 (2016) 677–685.

    Article  Google Scholar 

  10. H.J. Zhang, W.D. Wen, H.T. Cui, Mater. Sci. Eng. A 504 (2009) 99–103.

    Article  Google Scholar 

  11. D.N. Zhang, Q.Q. Shangguan, C.J. **e, F. Liu, J. Alloy. Compd. 619 (2015) 186–194.

    Article  Google Scholar 

  12. H.Y. Li, X.F. **ao, J.Y. Duan, J.J. Liu, Mater. Sci. Eng. A 577 (2013) 138–146.

    Article  Google Scholar 

  13. Z.W. Yuan, F.G. Li, G.L. Ji, High Temp. Mater. Process. 37 (2018) 163–172.

    Article  Google Scholar 

  14. F.J. Zerilli, R.W. Armstrong, J. Appl. Phys. 62 (1987) 1816–1825.

    Article  Google Scholar 

  15. D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, P.V. Sivaprasad, Mater. Sci. Eng. A 526 (2009) 1–6.

    Article  Google Scholar 

  16. R.X. Chai, W.B. Su, C. Guo, F.F. Zhang, Mater. Sci. Eng. A 556 (2012) 473–478.

    Article  Google Scholar 

  17. S. Roy, S. Biswas, K.A. Babu, S. Mandal, J. Mater. Eng. Perform. 27 (2018) 3762–3772.

    Article  Google Scholar 

  18. Y.C. Lin, X.M. Chen, Comput. Mater. Sci. 49 (2010) 628–633.

    Article  Google Scholar 

  19. C.M. Sellars, W.J. Mctegart, Acta Metall. 14 (1966) 1136–1138.

    Article  Google Scholar 

  20. A. Shokry, S. Gowid, G. Kharmanda, E. Mahdi, Materials 12 (2019) 2873.

    Article  Google Scholar 

  21. Y. Zhang, S. Ma, Y. Liang, M. Yang, Mater. Res. Express 6 (2019) 126588.

    Article  Google Scholar 

  22. D.J. Steinberg, S.G. Cochran, M.W. Guinan, J. Appl. Phys. 51 (1980) 1498–1504.

    Article  Google Scholar 

  23. C. Zener, J.H. Hollomon, J. Appl. Phys. 15 (1944) 22–32.

    Article  Google Scholar 

  24. P.F. Kozlowski, B.G. Thomas, J.A. Azzi, H. Wang, Metall. Trans. A 23 (1992) 903–918.

    Article  Google Scholar 

  25. C. Ji, Z.L. Wang, C.H. Wu, M.Y. Zhu, Metall. Mater. Trans. B 49 (2018) 1–16.

    Google Scholar 

  26. A. He, G.L. **e, H.L. Zhang, X.T. Wang, Mater. Des. 52 (2013) 677–685.

    Article  Google Scholar 

  27. F. Yin, L. Hua, H. Mao, X.H. Han, Mater. Des. 43 (2013) 393–401.

    Article  Google Scholar 

  28. J.Q. Tan, M. Zhan, S. Liu, T. Huang, J. Guo, H. Yang, Mater. Sci. Eng. A 631 (2015) 214–219.

    Article  Google Scholar 

  29. D. Samantaray, S. Mandal, A.K. Bhaduri, Comput. Mater. Sci. 47 (2009) 568–576.

    Article  Google Scholar 

  30. J. Li, F.G. Li, J. Cai, R.T. Wang, Z.W. Yuan, G.L. Ji, Comput. Mater. Sci. 71 (2013) 56–65.

    Article  Google Scholar 

  31. X. **ao, G.Q. Liu, B.F. Hu, X. Zheng, L.N. Wang, S.J. Chen, A. Ullah, Comput. Mater. Sci. 62 (2012) 227–234.

    Article  Google Scholar 

  32. G.L. Ji, F.G. Li, Q.H. Li, H.Q. Li, Z. Li, Mater. Sci. Eng. A 528 (2011) 4774–4782.

    Article  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by the National Natural Science Foundation of China (Nos. 51974078 and U20A20272), Science and Technology Planning Project of Liaoning Province (Nos. 2022JH2/101300002 and 2022JH25/10200003), and the Fundamental Research Funds for the Central Universities of China (No. N2125018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Ji or Miao-yong Zhu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Zy., Zhang, Lh., Ji, C. et al. Flow stress and constitutive relations of ship plate steel continuous casting slab with solidification end reduction process. J. Iron Steel Res. Int. 30, 1769–1781 (2023). https://doi.org/10.1007/s42243-023-00940-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00940-6

Keywords

Navigation