Log in

Partitioning of nitrogen atoms and its effect on retained austenite content in an ultra-low-carbon Cr–Mn–N stainless steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The partitioning of nitrogen atoms and its effect on the retained austenite content (RAC) during quenching and partitioning (Q&P) process were investigated by dilatometry, X-ray diffraction, and field emission transmission electron microscopy with energy-dispersive spectrometer map** in a 00Cr13Mn8N steel. Nitrogen partitioning by diffusion of N atoms from martensite to austenite occurred at 400 °C after quenching. N atoms are enriched in austenite after partitioning, and the stability of these N-rich austenite is improved and retained at room temperature during subsequent cooling. The different quenching temperatures (QTs) result in different phase fractions after partitioning. With the increase in QT, RAC first increases and then decreases, and the maximum RAC is 28.5 vol.% after quenching at 80 °C. A mathematical model was developed to rapidly and accurately characterize the phase fraction in Q&P process based on the relative length change of the samples partitioned after quenching at different QTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611–2622.

    Article  Google Scholar 

  2. J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Curr. Opin. Solid State Mater. Sci. 8 (2004) 219–237.

    Article  Google Scholar 

  3. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, Acta Mater. 56 (2008) 16–22.

    Article  Google Scholar 

  4. C.Y. Wang, J. Shi, W.Q. Cao, H. Dong, Mater. Sci. Eng. A 527 (2010) 3442–3449.

    Article  Google Scholar 

  5. M.J. Santofimia, L. Zhao, R. Petrov, J. Sietsma, Mater. Charact. 59 (2008) 1758–1764.

    Article  Google Scholar 

  6. H.Y. Li, X.W. Lu, X.C. Wu, Y.A. Min, X.J. **, Mater. Sci. Eng. A 527 (2010) 6255–6259.

    Article  Google Scholar 

  7. T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada, S. Takaki, Mater. Sci. Eng. A 532 (2012) 585–592.

    Article  Google Scholar 

  8. J. Mola, B.C. De Cooman, Metall. Mater. Trans. A 44 (2013) 946–967.

    Article  Google Scholar 

  9. J. Kobayashi, D. Ina, N. Yoshikawa, K. Sugimoto, ISIJ Int. 52 (2012) 1894–1901.

    Article  Google Scholar 

  10. F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, M.J. Santofimia, Acta Mater. 104 (2016) 72–83.

    Article  Google Scholar 

  11. S. Kang, E. De Moor, J.G. Speer, Metall. Mater. Trans. A 46 (2015) 1005–1011.

    Article  Google Scholar 

  12. Z.H. Cai, H. Ding, Z.Y. Tang, R.D.K. Misra, Mater. Sci. Eng. A 676 (2016) 289–293.

    Article  Google Scholar 

  13. B. Kim, J. Sietsma, M.J. Santofimia, Mater. Des. 127 (2017) 336–345.

    Article  Google Scholar 

  14. N. Zhong, X.D. Wang, L. Wang, Y.H. Rong, Mater. Sci. Eng. A 506 (2009) 111–116.

    Article  Google Scholar 

  15. E. De Moor, J.G. Speer, D.K. Matlock, J.H. Kwak, S.B. Lee, Steel Res. Int. 83 (2012) 322–327.

    Article  Google Scholar 

  16. M. Wendler, C. Ullrich, M. Hauser, L. Krüger, O. Volkova, A. Weiß, J. Mola, Acta Mater. 133 (2017) 346–355.

    Article  Google Scholar 

  17. Z.A. Zhou, W.T. Fu, Z. Zhu, B. Li, Z.P. Shi, S.H. Sun, Int. J. Miner. Metall. Mater. 25 (2018) 547–553.

    Article  Google Scholar 

  18. Q.L. Huang, S. Christina, H. Biermann, O. Volkova, J. Mola, Steel Res. Int. 87 (2016) 1082–1094.

    Article  Google Scholar 

  19. J. Tobata, K.L. Ngo-Huynh, N. Nakada, T. Tsuchiyama, S. Takaki, ISIJ Int. 52 (2012) 1377–1382.

    Article  Google Scholar 

  20. J.G. Speer, F.C.R. Assunção, D.K. Matlock, D.V. Edmonds, Mater. Res. 8 (2005) 417–423.

    Article  Google Scholar 

  21. Z. Li, D. Wu, ISIJ Int. 46 (2006) 121–128.

    Article  Google Scholar 

  22. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, Mater. Sci. Eng. A 438–440 (2006) 25–34.

    Article  Google Scholar 

  23. H.Y. Li, X.W. Lu, W.J. Li, X.J. **, Metall. Mater. Trans. A 41 (2010) 1284–1300.

    Article  Google Scholar 

  24. L. Cheng, A. Böttger, Th.H. de Keijser, E.J. Mittemeijer, Scripta Metall. Mater. 24 (1990) 509–514.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Engineering Research Center of Hot Manufacturing (No. 18DZ2253400) and Natural Science Foundation—Steel and Iron Foundation of Hebei Province (No. E2020203195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-hua Sun.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10745 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Fu, Wt., Li, Rb. et al. Partitioning of nitrogen atoms and its effect on retained austenite content in an ultra-low-carbon Cr–Mn–N stainless steel. J. Iron Steel Res. Int. 28, 1030–1036 (2021). https://doi.org/10.1007/s42243-021-00560-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00560-y

Keywords

Navigation