Log in

Experimental study on the dynamic response of a 3-D wedge under asymmetric impact

  • Special Column on the 12th International Workshop on Ship and Marine Hydrodynamics (IWSH 2023) (Guest Editor De-Cheng Wan)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Water entry problems represent complex multiphase flows involving air, water, and structure interaction, occurring rapidly in rough seas, and potentially effecting structural integrity of floating structures. This paper experimentally investigates asymmetric slamming loads acting on a 3-D elastic wedge section. The specimen, featuring two different bottom plates (stiffened and unstiffened), each 4 mm thick, aims to assess the effect of structural stiffness on dynamic loads. The experiments are conducted at different drop heights of 25 cm and 50 cm and varying heel angles from 5° to 25°. The paper describes the experimental conditions, including wedge geometry, material properties, and the test plan. The study explores the influence of heel angle on impact acceleration, revealing an increase in peak acceleration with a higher inclination angle, particularly in the vertical direction. Additionally, the hydrodynamic pressure resulting from asymmetric slamming is presented. The pressure results analyzed and compared at different locations along the length of the wedge. The experimental findings indicate that, despite the leeward side (stiffened) experiencing a smaller hydrodynamic load, the heel angle significantly affects pressure results on the windward side (unstiffened), leading to a more pronounced dynamic response. The time history of pressure results emphasizes the effect of elastic vibrations, particularly noticeable on the unstiffened bottom plate. This study contributes to a deeper understanding of asymmetric slamming on aluminum structures, facilitating the enhancement of mathematical models and the validation of numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von Karman Th. The impact on seaplane floats during landing [R]. NACA Technical Note NACA-TN-32, Washington DC, USA, 1929.

  2. Wagner H. Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten [J]. Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193–215.

    Google Scholar 

  3. Vorus W. S. A flat cylinder theory for vessel impact and steady planing resistance [J]. Journal of Ship Research, 1996, 40(2): 89–106.

    Article  Google Scholar 

  4. Mei X., Liu Y., Yue D. K. On the water impact of general two-dimensional sections [J]. Applied Ocean Research, 1999, 21(1): 1–5.

    Article  Google Scholar 

  5. Korobkin A. A., Iafrati A. Hydrodynamic loads during initial stage of floating body impact [J]. Journal of Fluids and Structures, 2005, 21(4): 413–27.

    Article  Google Scholar 

  6. Yettou E. M., Desrochers A., Champoux Y. A new analytical model for pressure estimation of symmetrical water impact of a rigid wedge at variable velocities [J]. Journal of Fluids and Structures, 2007, 23(3): 501–22.

    Article  Google Scholar 

  7. Hosseinzadeh S., Khorasanchi M., Seif M. S. Investigation of planing vessels motion using nonlinear strip theory–An experimental and numerical study [J]. Ships and Offshore Structures, 2019, 14(7): 684–97.

    Article  Google Scholar 

  8. Tassin A., Korobkin A. A., Cooker M. J. On analytical models of vertical water entry of a symmetric body with separation and cavity initiation [J]. Applied Ocean Research, 2014, 48: 33–41.

    Article  Google Scholar 

  9. Zhao R., Faltinsen O. Water entry of two-dimensional bodies [J]. Journal of Fluid Mechanics, 1993, 246: 593–612.

    Article  Google Scholar 

  10. Khabakhpasheva T. I., Korobkin A. A. Elastic wedge impact onto a liquid surface: Wagner’s solution and approximate models [J]. Journal of Fluids and Structures, 2013, 36: 32–49.

    Article  Google Scholar 

  11. Shams A., Porfiri M. Treatment of hydroelastic impact of flexible wedges [J]. Journal of Fluids and Structures, 2015, 57: 229–46.

    Article  Google Scholar 

  12. Sun Z., Korobkin A., Sui X. P. et al. A semi-analytical model of hydroelastic slamming [J]. Journal of Fluids and Structures, 2021, 101: 103200.

    Article  Google Scholar 

  13. Shams A., Zhao S., Porfiri M. Hydroelastic slamming of flexible wedges: Modeling and experiments from water entry to exit [J]. Physics of Fluids, 2017, 29(3): 03107.

    Article  Google Scholar 

  14. Jalalisendi M., Porfiri M. Water entry of cylindrical shells: Theory and experiments [J]. AIAA Journal, 2018, 56(11): 4500–4514.

    Article  Google Scholar 

  15. Sengupta D., Show T. K., Hirdaris S. et al. A semi analytic method for the analysis of the symmetric hydroelastic response of a container ship under slamming and green water loads [J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2023, 17: 14750902231165808.

    Google Scholar 

  16. Panciroli R., Abrate S., Minak G. et al. Hydroelasticity in water-entry problems: Comparison between experimental and SPH results [J]. Composite Structures, 2012, 94(2): 532–539.

    Article  Google Scholar 

  17. Wang S., Soares C. G. Numerical study on the water impact of 3D bodies by an explicit finite element method [J]. Ocean Engineering, 2014, 78: 73–88.

    Article  Google Scholar 

  18. Yang L., Sun T. Z., Wei Y. J. et al. Hydroelastic analysis of water entry of deformable spheres [J]. Journal of Hydrodynamics, 2021, 33(4): 821–832.

    Article  Google Scholar 

  19. Yan D., Hosseinzadeh S., Lakshmynarayanana A. et al. Comparative study on numerical hydroelastic analysis of impact-induced loads [C]. Proceedings of the 23rd Numerical Towing Tank Symposium, Mülheim, Germany, 2021.

  20. Hosseinzadeh S., Topa A., Tabri K. A numerical sensitivity analysis of fluid-structure interaction simulations on slamming loads and responses [J]. IOP Conference Series: Materials Science and Engineering, 2023, 1288(1): 012017.

    Article  Google Scholar 

  21. Saincher S., Srivastava K., Vijayakumar R. et al. Application of IITM-RANS3D to free-fall water entry of prismatic and non-prismatic finite wedges [J]. Journal of Hydrodynamics, 2023, 35(3): 417–30.

    Article  Google Scholar 

  22. Maki K. J., Lee D., Troesch A. W. et al. Hydroelastic impact of a wedge-shaped body [J]. Ocean Engineering, 2011, 38(4): 621–629.

    Article  Google Scholar 

  23. Wang S., Guedes Soares C. Hydroelastic analysis of a rectangular plate subjected to slamming loads [J]. Journal of Marine Science and Application, 2017, 16: 405–416.

    Article  Google Scholar 

  24. Truong D. D., Jang B. S., Ju H. B. et al. Prediction of slamming pressure considering fluid-structure interaction. Part I: Numerical simulations [J]. Ships and Offshore Structures, 2022, 17(1): 7–28.

    Article  Google Scholar 

  25. Truong D. D., Jang B. S., Janson C. E. et al. Benchmark study on slamming response of flat-stiffened plates considering fluid-structure interaction [J]. Marine Structures, 2021, 79: 103040.

    Article  Google Scholar 

  26. Hosseinzadeh S., Tabri K. Hydroelastic effects of slamming impact loads during free-fall water entry [J]. Ships and Offshore Structures, 2021, 16(Supp1.): 68–84.

    Article  Google Scholar 

  27. Yan D., Mikkola T., Kujala P. et al. Hydroelastic analysis of slamming induced impact on stiff and flexible structures by two-way CFD-FEA coupling [J]. Ships and Offshore Structures, 2023, 18(9): 1300–1312.

    Article  Google Scholar 

  28. Yan D., Mikkola T., Lakshmynarayanana A. et al. A study into the FSI modelling of flat plate water entry and related uncertainties [J]. Marine Structures, 2022, 86: 103296.

    Article  Google Scholar 

  29. Hosseinzadeh S., Tabri K., Topa A. et al. Slamming loads and responses on a non-prismatic stiffened aluminium wedge: Part II. Numerical simulations [J]. Ocean Engineering, 2023, 279: 114309.

    Article  Google Scholar 

  30. Xu L., Troesch A. W., Peterson R. Asymmetric hydrodynamic impact and dynamic response of vessels [J]. Journal of Offshore Mechanics and Arctic Engineering, 1999, 121(2): 83–89..

    Article  Google Scholar 

  31. Wang S., Soares C. G. Asymmetrical water impact of two-dimensional wedges with roll angle with multi-material Eulerian formulation [J]. International Journal of Maritime Engineering, 2014, 156(2A): A115–A130.

    Google Scholar 

  32. Krastev V. K., Facci A. L., Ubertini S. Asymmetric water impact of a two dimensional wedge: A systematic numerical study with transition to ventilating flow conditions [J]. Ocean Engineering, 2018, 147: 386–98.

    Article  Google Scholar 

  33. Hosseinzadeh S., Izadi M., Tabri K. Free fall water entry of a two-dimensional asymmetric wedge in oblique slamming: A numerical study [C]. The 39th InInternational Conference on Offshore Mechanics and Arctic Engineering, Online/Virtual Conference, 2020.

  34. Mesa J. D., Maki K. J. Hydroelastic assessment of different high-speed-vessel stiffened panel designs [J]. Naval Engineers Journal, 2018, 130(3): 107–116.

    Google Scholar 

  35. Izadi M., Ghadimi P., Fadavi M. et al. Hydroelastic analysis of water impact of flexible asymmetric wedge with an oblique speed [J]. Meccanica, 2018, 53: 2585–2617.

    Article  MathSciNet  Google Scholar 

  36. **e H., Liu F., Tang H. et al. Numerical study on the dynamic response of a truncated ship-hull structure under asymmetrical slamming [J]. Marine Structures, 2020, 72: 102767.

    Article  Google Scholar 

  37. Wang K., Ma X., Bai W. et al. Numerical simulation of water entry of a symmetric/asymmetric wedge into waves using OpenFOAM [J]. Ocean Engineering, 2021, 227: 108923.

    Article  Google Scholar 

  38. Tavakoli S., Hirdaris S. The hydroelastic slamming in oblique seas [C]. International Conference on Offshore Mechanics and Arctic Engineering, Melbourne, Australia, 2023.

  39. Judge C., Troesch A., Perlin M. Initial water impact of a wedge at vertical and oblique angles [J]. Journal of Engineering Mathematics, 2004, 48: 279–303.

    Article  MathSciNet  Google Scholar 

  40. Barjasteh M., Zeraatgar H., Javaherian M. J. An experimental study on water entry of asymmetric wedges [J]. Applied Ocean Research, 2016, 58: 292–304.

    Article  Google Scholar 

  41. Hosseinzadeh S., Tabri K. Free-fall water entry of a variable deadrise angle aluminium wedge: An experimental study [C]. Proceedings of the 8th International Conference on Marine Structures, Trondheim, Norway, 2021.

  42. Shams A., Jalalisendi M., Porfiri M. Experiments on the water entry of asymmetric wedges using particle image velocimetry [J]. Physics of Fluids, 2015, 27(2): 027103.

    Article  Google Scholar 

  43. Russo S., Jalalisendi M., Falcucci G. et al. Experimental characterization of oblique and asymmetric water entry [J]. Experimental Thermal and Fluid Science, 2018, 92: 141–161.

    Article  Google Scholar 

  44. Lin Y., Ma N., Gu X. et al. Experimental study on the asymmetric impact loads and hydroelastic responses of a very large container ship [J]. International Journal of Naval Architecture and Ocean Engineering, 2020, 12: 226–240.

    Article  Google Scholar 

  45. **e H., Dai X., Ren H. et al. Experimental characterization on slamming loads of a truncated ship bow under asymmetrical impact [J]. Ocean Engineering, 2023, 284: 115195.

    Article  Google Scholar 

  46. **e H., Peng H., Liu F. et al. Hydroelastic analysis of an elastic thin-walled structure obliquely impacting a calm water surface [J]. Thin-Walled Structures, 2024, 26: 111638.

    Article  Google Scholar 

  47. Hosseinzadeh S., Tabri K., Hirdaris S. et al. Slamming loads and responses on a non-prismatic stiffened aluminium wedge: Part I. Experimental study [J]. Ocean Engineering, 2023, 279: 114510.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Estonian Research Council (Grant No. PRG1820). The authors would also like to thank the staff of the Marine Technology Competence Center at Tallinn University of Technology (TALTECH MARTE) for their valuable support of the experimental study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Hosseinzadeh.

Ethics declarations

Conflict of interest: The authors declare that they have no conflict of interest. All authors declare that there are no other competing interests.

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent: Not application.

Additional information

Biography: Saeed Hosseinzadeh (1990-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, S., Tabri, K. Experimental study on the dynamic response of a 3-D wedge under asymmetric impact. J Hydrodyn 36, 263–274 (2024). https://doi.org/10.1007/s42241-024-0023-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-024-0023-9

Key words

Navigation