Log in

Lattice Boltzmann simulations for multiple tidal turbines using actuator line model

  • Special Column on the 5th CMHL Symposium 2022 (Guest Editor De-Cheng Wan)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In numerical simulations of tidal current farms, large-scale computational fluid dynamic (CFD) simulations with a high-resolution grid are required to calculate the interactions between tidal turbines. In this study, we develop a numerical simulation method for tidal current turbines using the lattice Boltzmann method (LBM), which is suitable for large-scale CFD simulations. Tidal turbines are modeled by using the actuator line (ACL) model, which represents each blade as a group of actuator points in a line. In order to validate our LBM-ACL model, we perform simulations for two interacting tidal turbines, and results of turbine performance are compared with a water tank experiment. The proposed model successfully reproduces the variation of the torque due to wave effects and mean turbine performance. We have demonstrated a large-scale simulation for ten tidal turbines using 8.55×108 grid points and 16 GPUs of Tesla P100 and the simulation has been completed within 9 hours with the LBM performance of 392 MLUPS per GPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mycek P., Gaurier B., Germain G. et al. Experimental study of the turbulence intensity effects on marine current turbines behaviour Part I: One single turbine [J]. Renewable Energy, 2014, 66: 729–746.

    Article  Google Scholar 

  2. Mycek P., Gaurier B., Germain G. et al. Experimental study of the turbulence intensity effects on marine current turbines behaviour Part II: Two interacting turbines [J]. Renewable Energy, 2014, 68: 876–892.

    Article  Google Scholar 

  3. Gaurier B., Carlier C., Germain G. et al. Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance [J]. Renewable Energy, 2020, 148: 1150–1164.

    Article  Google Scholar 

  4. Stallard T., Collings R., Feng T. et al. Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371(1985): 20120159.

    Article  Google Scholar 

  5. Nuernberg M., Tao L. Experimental study of wake characteristics in tidal turbine arrays [J]. Renewable Energy, 2020, 127(2018): 168–181.

    Google Scholar 

  6. Sørensen J. N., Shen W. Z. Numerical modeling of wind turbine wakes [J]. Journal of Fluids Engineering, 2002, 124(2): 393–399.

    Article  Google Scholar 

  7. Afgan I., McNaughton J., Rolfo S. et al. Turbulent flow and loading on a tidal stream turbine by LES and RANS [J]. International Journal of Heat and Fluid Flow, 2013, 43: 96–108.

    Article  Google Scholar 

  8. Angelidis D., Chawdhary S., Sotiropoulos F. Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows [J]. Journal of Computational Physics, 2016, 325: 272–300.

    Article  MathSciNet  Google Scholar 

  9. Ouro P., Ramírez L., Harrold M. Analysis of array spacing on tidal stream turbine farm performance using large-eddy simulation [J]. Journal of Fluids and Structures, 2019, 91: 102732.

    Article  Google Scholar 

  10. Wolf-Gladrow D. A. Lattice-gas cellular automata and lattice Boltzmann models: an introduction [M]. Berlin, German: Springer, 2004

    MATH  Google Scholar 

  11. Grondeau M., Guillou S. S., Poirier J. C. et al. Studying the wake of a tidal turbine with an IBM-LBM approach using realistic inflow conditions [J]. Energies, 2022, 15: 2092.

    Article  Google Scholar 

  12. Grondeau M., Guillou S. S., Mercier P. et al. Wake of a ducted vertical axis tidal turbine in turbulent flows, LBM actuator-line approach [J]. Energies, 2019, 12: 4273.

    Article  Google Scholar 

  13. Geier M., Schönherr M., Pasquali A. et al. The cumulant lattice Boltzmann equation in three dimensions: Theory and validation [J]. Computers and Mathematics with Applications, 2015, 70(4): 507–547

    Article  MathSciNet  Google Scholar 

  14. Hu C., Fukushima S., Kamra M. M. et al. Experimental study of the interaction between two tidal turbines with the free surface wave effect [C]. Conference proceedings of the Japan Society of Naval Architects and Ocean Engineers, 2021, 32: 633–636.

    Google Scholar 

  15. Bhatnagar P. L., Gross E. P., Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems [J]. Physical Review, 1954, 94(3): 511–525.

    Article  Google Scholar 

  16. Marten D., Wendler J., Pechlivanoglou G. et al. QBLADE: An open source tool for design and simulation of horizontal and vertical axis wind turbines [J]. International Journal of Emerging Technology and Advanced Engineering, 2013, 3(3): 264–269.

    Google Scholar 

  17. Liu C., Hu C. An actuator line-immersed boundary method for simulation of multiple tidal turbines [J]. Renewable Energy, 2019, 136: 473–490.

    Article  Google Scholar 

  18. Asmuth H., Olivares-Espinosa H., Nilsson K. et al. The actuator line model in lattice Boltzmann frameworks: Numerical sensitivity and computational performance [J]. Journal of Physics: Conference Series, 2019, 1256(1): 012022.

    Google Scholar 

  19. Onodera N., Ohashi K. Large-scale free-surface flow simulation using lattice Boltzmann method on multi-GPU clusters [C]. ECCOMAS Congress 2016-Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, Istanbul, Turkey, 2016, 1294–1304.

  20. Janßen C., Krafczyk M. Free surface flow simulations on GPGPUs using the LBM [J]. Computers and Mathematics with Applications, 2011, 61(12): 3549–3563.

    Article  MathSciNet  Google Scholar 

  21. Watanabe S., Aoki T. Large-scale flow simulations using lattice Boltzmann method with AMR following free-surface on multiple GPUs [J]. Computer Physics Communications, 2021, 264: 107871.

    Article  MathSciNet  Google Scholar 

  22. Watanabe S., Fujisaki S., Hu C. Numerical simulation of dam break flow impact on vertical cylinder by cumulant lattice Boltzmann method [J]. Journal of Hydrodynamics, 2021, 33(2): 185–194.

    Article  Google Scholar 

  23. Asmuth H., Olivares-espinosa H., Ivanell S. Actuator line simulations of wind turbine wakes using the lattice Boltzmann method [J]. Wind Energy Science, 2020, 5(2): 623–645.

    Article  Google Scholar 

  24. Valero-Lara P. Reducing memory requirements for large size LBM simulations on GPUs [J]. Concurrency and Computation: Practice and Experience, 2017, 29(24): e4221.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the JSPS KAKENHI (Grant No. JP19H02363). The computation was carried out using the computer resource offered under the category of General Projects by Research Institute for Information Technology, Kyushu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiya Watanabe.

Additional information

Biography: Seiya Watanabe (1991-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, S., Hu, C. Lattice Boltzmann simulations for multiple tidal turbines using actuator line model. J Hydrodyn 34, 372–381 (2022). https://doi.org/10.1007/s42241-022-0037-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0037-0

Key words

Navigation