Log in

The Fabrication of Gas-driven Bionic Soft Flytrap Blade and Related Feasibility Tests

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Unlike most animals, plants fail to move bodily at will. However, movements also occur in every single part of plants out of energy and nutrients needs, spanning from milliseconds to hours on a time scale. And with the growing understanding of plant movement in the academic community, bionic soft robots based on plant movement principles are increasingly studied and are considered by scientists as a source of inspiration for innovative engineering solutions. In this paper, through the study of the biological morphology, microstructure, and motion mechanism of the flytrap, we developed chambered design rules, and designed and fabricated a gas-driven bionic flytrap blade, intending to investigate its feasibility of performing complex bending deformation. The experimental result shows that the bionic flytrap blade can achieve multi-dimensional bending deformation, and complete the bending and closing action within 2 s. The performance of the bionic flytrap blade fabricated is in high agreement with the real flytrap blade in terms of bending and deformation, achieving an excellent bionic design effect. In this study, the chambered design rules of the bionic flytrap blade were proposed and developed, and the possibility of its deformation was investigated. The effects of different chamber types and different flow channel design precepts on the bending deformation of the bionic flytrap blade were revealed, together with the relationship between the response time and flow rate of the bionic flytrap blade. At last, this study provides new ideas for the study of plant blade motion mechanism in a hope to expand the application fields of bionic robots, especially hope to offer solutions for plant-type robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Accessibility

The data used to support the fndings of this study are available from the corresponding author upon reasonable request.

References

  1. Wang, Q., Xu, K., Fan, C., Sun, L., Zhang, L., & Wang, K. (2021). Research on material and morphological structure of venus flytrap trigger hair. Journal of Bionic Engineering, 18(5), 1126–1136.

    Article  Google Scholar 

  2. Zeng, H. B., Wang, Y., Jiang, T., **a, H. Q., Gu, X., & Chen, H. X. (2021). Recent progress of biomimetic motions—from microscopic micro/nanomotors to macroscopic actuators and soft robotics. RSC advances, 11(44), 27406–27419.

    Article  Google Scholar 

  3. Li, D., Wang, S., He, J., Zeng, H., Yao, K. M., Gao, Z., & Yu, X. G. (2021). Bioinspired ultrathin piecewise controllable soft robots. Advanced Materials Technologies, 6(5), 2001095.

    Article  Google Scholar 

  4. Fu, S. H., Wei, F. A., Yin, C., Yao, L. G., & Wang, Y. X. (2021). Biomimetic soft micro-swimmers: from actuation mechanisms to applications. Biomedical Microdevices, 23(1), 1–13.

    Article  Google Scholar 

  5. Xu, Z. Y., Zhou, Y. S., Zhang, B. P., Zhang, C., Wang, J. F., & Wang, Z. K. (2021). Recent progress on plant-inspired soft robotics with hydrogel building blocks: Fabrication, actuation and application. Micromachines, 12(6), 608.

    Article  Google Scholar 

  6. Tauber, F., Vouloutsi, V., Mura, A., & Speck, T. (2022). Living machines: from biological models to soft machines. Bioinspiration & Biomimetics 17(3).

  7. Ren, L. Q., Li, B. Q., Wei, G. W., Wang, K. Y., Song, Z. Y., Wei, Y. Y., & Liu, Q. P. (2021). Biology and bioinspiration of soft robotics: actuation, sensing, and system integration. Iscience, 24(9), 103075.

    Article  Google Scholar 

  8. Wei, Q. D., Xu, H., Sun, F., Chang, F., Chen, S. Q., & Zhang, X. Y. (2022). Biomimetic fiber reinforced dual-mode actuator for soft robots. Sensors and Actuators A: Physical, 344, 113761.

    Article  Google Scholar 

  9. Volkov, A. G. (2021). A Venus-flytrap-based actuator. Nature Electronics, 4(2), 97–97.

    Article  Google Scholar 

  10. Laschi, C., & Mazzolai, B. (2021). Bioinspired materials and approaches for soft robotics. Mrs Bulletin, 46(4), 345–349.

    Article  Google Scholar 

  11. Tauber, F. J., Auth, P., Teichmann, J., Scherag, F. D., & Speck, T. (2022). Novel motion sequences in plant-inspired robotics: Combining inspirations from snap-trap** in two plant species into an artificial venus flytrap demonstrator. Biomimetics, 7(3), 99.

    Article  Google Scholar 

  12. Meder, F., Babu, S. P. M., & Mazzolai, B. (2022). A plant tendril-like soft robot that grasps and anchors by exploiting its material arrangement. IEEE Robotics and Automation Letters, 7(2), 5191–5197.

    Article  Google Scholar 

  13. Mazzolai, B., Walker, I., & Speck, T. (2021). Generation growbots: Materials, mechanisms, and biomimetic design for growing robots. Frontiers in Robotics and A, I, 175.

    Google Scholar 

  14. Forterre, Y. (2013). Indrek Must Slow, fast and furious: Understanding the physics of plant movements. Journal of experimental botany, 64(15), 4745–4760.

    Article  Google Scholar 

  15. Stahlberg, R. (2009). The phytomimetic potential of three types of hydration motors that drive nastic plant movements. Mechanics of Materials, 41(10), 1162–1171.

    Article  Google Scholar 

  16. Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X., & Whitesides, G. M. (2011). Titelbild: Soft robotics for chemists (angew. Chem. 8/2011). Angewandte Chemie, 123(8), 1765–1765.

    Article  Google Scholar 

  17. Martinez, R. V., Branch, J. L., Fish, C. R., **, L., Shepherd, R. F., Nunes, R. M., & Whitesides, G. M. (2013). Robotic tentacles with three-dimensional mobility based on flexible elastomers. Advanced materials, 25(2), 205–212.

    Article  Google Scholar 

  18. Wehner, M., Truby, R. L., Fitzgerald, D. J., Mosadegh, B., Whitesides, G. M., Lewis, J. A., & Wood, R. J. (2016). An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 536(7617), 451–455.

    Article  Google Scholar 

  19. Kang, R., Guglielmino, E., Zullo, L., Branson, D. T., Godage, I., & Caldwell, D. G. (2016). Embodiment design of soft continuum robots. Advances in Mechanical Engineering, 8(4), 1687814016643302.

    Article  Google Scholar 

  20. Shintake, J., Cacucciolo, V., Shea, H., & Floreano, D. (2018). Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Robotics, 5(4), 466–474.

    Article  Google Scholar 

  21. Zolfagharian, A., Kaynak, A., Yang Khoo, S., Zhang, J., Nahavandi, S., & Kouzani, A. (2018). control-oriented modelling of a 3D-printed soft actuator. Materials, 12(1), 71.

    Article  Google Scholar 

  22. Liu, C., Dong, E., Xu, M., Alici, G., & Yang, J. (2018). Locomotion analysis and optimization of actinomorphic robots with soft arms actuated by shape memory alloy wires. International Journal of Advanced Robotic Systems, 15(4), 1729881418787943.

    Article  Google Scholar 

  23. Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., & Laschi, C. (2011). Design concept and validation of a robotic arm inspired by the octopus. Materials Science and Engineering: C, 31(6), 1230–1239.

    Article  Google Scholar 

  24. Huang, C. L., Lv, J. A., Tian, X. J., Wang, Y. C., Yu, Y. L., & Liu, J. (2015). Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Scientific Reports, 5(1), 1–8.

    Article  Google Scholar 

  25. Najem, J., Sarles, S. A., Akle, B., & Leo, D. J. (2012). Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators. Smart Materials and Structures, 21(9), 094026.

    Article  Google Scholar 

  26. Must, I., Sinibaldi, E., & Mazzolai, B. (2019). A variable-stiffness tendril-like soft robot based on reversible osmotic actuation. Nature communications, 10(1), 1–8.

    Article  Google Scholar 

  27. Mishra, A. K., Tramacere, F., Guarino, R., Pugno, N. M., & Mazzolai, B. (2018). A study on plant root apex morphology as a model for soft robots moving in soil. PLoS ONE, 13(6), e0197411.

    Article  Google Scholar 

  28. Sinibaldi, E., Argiolas, A., Puleo, G. L., & Mazzolai, B. (2014). Another lesson from plants: The forward osmosis-based actuator. PLoS ONE, 9(7), e102461.

    Article  Google Scholar 

  29. Mazzolai, B., Mondini, A., Corradi, P., Laschi, C., Mattoli, V., Sinibaldi, E., & Dario, P. (2010). A miniaturized mechatronic system inspired by plant roots for soil exploration. IEEE/ASME Transactions on Mechatronics, 16(2), 201–212.

    Article  Google Scholar 

  30. Harrington, M. J., Razghandi, K., Ditsch, F., Guiducci, L., Rueggeberg, M., Dunlop, J. W., & Burgert, I. (2011). Origami-like unfolding of hydro-actuated ice plant seed capsules. Nature communications, 2(1), 1–7.

    Article  Google Scholar 

  31. Gao, W., Wang, L. L., Wang, X. Z., & Liu, H. Z. (2016). Magnetic driving flowerlike soft platform: Biomimetic fabrication and external regulation. ACS Applied Materials & Interfaces, 8(22), 14182–14189.

    Article  Google Scholar 

  32. Wani, O. M., Zeng, H., & Priimagi, A. (2017). A light-driven artificial flytrap. Nature communications, 8(1), 1–7.

    Article  Google Scholar 

Download references

Funding

This article was funded by the National Natural Science Foundation of China,51905084; the Natural Science Foundation of Heilongjiang Province,YQ2021E002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yan, J., Li, J. et al. The Fabrication of Gas-driven Bionic Soft Flytrap Blade and Related Feasibility Tests. J Bionic Eng 20, 628–644 (2023). https://doi.org/10.1007/s42235-022-00285-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00285-y

Keywords

Navigation