Log in

Review of Abnormality Detection and Fault Diagnosis Methods for Lithium-Ion Batteries

  • Published:
Automotive Innovation Aims and scope Submit manuscript

Abstract

Electric vehicles are develo** prosperously in recent years. Lithium-ion batteries have become the dominant energy storage device in electric vehicle application because of its advantages such as high power density and long cycle life. To ensure safe and efficient battery operations and to enable timely battery system maintenance, accurate and reliable detection and diagnosis of battery faults are necessitated. In this paper, the state-of-the-art battery fault diagnosis methods are comprehensively reviewed. First, the degradation and fault mechanisms are analyzed and common abnormal behaviors are summarized. Then, the fault diagnosis methods are categorized into the statistical analysis-, model-, signal processing-, and data-driven methods. Their distinctive characteristics and applications are summarized and compared. Finally, the challenges facing the existing fault diagnosis methods are discussed and the future research directions are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BMS:

Battery management system

EIS:

Electrochemical impedance spectroscopy

EV:

Electric vehicle

ISC:

Internal short-circuit

LIB:

Lithium-ion battery

RUL:

Remaining useful life

SOC:

State of charge

SOH:

State of health

SVM:

Support vector machine

References

  1. Lin, C., Kong, W., Tian, Y., Wang, W., Zhao, M.: Heating lithium-ion batteries at low temperatures for onboard applications: recent progress, challenges and prospects. Automot. Innov. 5, 3–17 (2022)

    Article  Google Scholar 

  2. Deng, L., Wu, F., Gao, X., Wu, W.: Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. Rare Met. 39, 1457–1463 (2020)

    Article  Google Scholar 

  3. Du, K., Ang, E.H., Wu, X., Liu, Y.: Progresses in sustainable recycling technology of spent lithium-ion batteries. Energy Environ. Mater. 5, 1012–1036 (2022)

    Article  Google Scholar 

  4. Liu, T., Yang, X., Ge, S., Leng, Y., Wang, C.: Ultrafast charging of energy-dense lithium-ion batteries for urban air mobility. eTransportation 7, 100103 (2021)

    Article  Google Scholar 

  5. Tian, W., Li, M., Niu, J., Li, W., Shi, J.: The research progress and comparisons between lithium-ion battery and sodium ion battery. In: 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO) pp. 313–318 (2019). https://doi.org/10.1109/NANO46743.2019.8993684

  6. Lyu, P., Liu, X., Qu, J., Zhao, J., Huo, Y., Qu, Z., Rao, Z.: Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater. 31, 195–220 (2020)

    Article  Google Scholar 

  7. Gao, X., Liu, X., **e, W., Zhang, L., Yang, S.: Multiscale observation of Li plating for lithium-ion batteries. Rare Met. 40, 3038–3048 (2021)

    Article  Google Scholar 

  8. Wen, J., Yu, Y., Chen, C.: A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater. Express 2, 197–212 (2012)

    Article  Google Scholar 

  9. Liu, J., Peng, W., Yang, M., **, K., Liu, P., Sun, J., Wang, Q.: Quantitative analysis of aging and detection of commercial 18650 lithium-ion battery under slight overcharging cycling. J. Clean. Prod. 340, 130756 (2022)

    Article  Google Scholar 

  10. Chen, S., Gao, Z., Sun, T.: Safety challenges and safety measures of Li-ion batteries. Energy Sci. Eng. 9, 1647–1672 (2021)

    Article  Google Scholar 

  11. Wang, Q., **, P., Zhao, X., Chu, G., Sun, J., Chen, C.: Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210–224 (2012)

    Article  Google Scholar 

  12. Shahid, S., Chea, B., Agelin-Chaab, M.: Development of a hybrid cooling concept for cylindrical li-ion cells. J. Energy Storage 50, 104214 (2022)

    Article  Google Scholar 

  13. Wang, H., Lara-Curzio, E., Rule, E.T., Winchester, C.S.: Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries. J. Power Sources 342, 913–920 (2017)

    Article  Google Scholar 

  14. Wang, Y., Meng, D., Li, R., Zhou, Y., Zhang, X.: Multi-Fault diagnosis of interacting multiple model batteries based on low inertia noise reduction. IEEE Access 9, 18465–18480 (2021)

    Article  Google Scholar 

  15. Wang, Z., Song, C., Zhang, L., Zhao, Y., Liu, P., Dorrell, D. G.: A data-driven method for battery charging capacity abnormality diagnosis in electric vehicle applications. IEEE Trans. Transp. Electrif. 8, 990–999 (2022)

    Article  Google Scholar 

  16. Kong, X., Zheng, Y., Ouyang, M., Lu, L., Li, J., Zhang, Z.: Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs. J. Power Sources 395, 358–368 (2018)

    Article  Google Scholar 

  17. Xu, J., Ma, J., Zhao, X., Chen, H., Xu, B., Wu, X.: Detection technology for battery safety in electric vehicles: a review. Energies 13, 4636 (2020)

    Article  Google Scholar 

  18. Wu, C., Zhu, C., Ge, Y., Zhao, Y.: A review on fault mechanism and diagnosis approach for Li-ion batteries. J. Nanomater. 2015, 631263 (2015)

    Article  Google Scholar 

  19. Zhang, K., Hu, X., Liu, Y., Lin, X., Liu, W.: Multi-fault detection and isolation for lithium-ion battery systems. IEEE Trans. Power Electron. 37, 971–989 (2022)

    Article  Google Scholar 

  20. Zhang, G., Wei, X., Tang, X., Zhu, J., Chen, S., Dai, H.: Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: a review. Renew. Sustain. Energy Rev. 141, 110790 (2021)

    Article  Google Scholar 

  21. Yang, S., Zhang, Z., Cao, R., Wang, M., Cheng, H., Zhang, L., Jiang, Y., Li, Y., Chen, B., Ling, H., Lian, Y., Wu, B., Liu, X.: Implementation for a cloud battery management system based on the CHAIN framework. Energy AI 5, 100088 (2021)

    Article  Google Scholar 

  22. Kitoh, K., Nemoto, H.: 100 Wh large size Li-ion batteries and safety tests. J. Power Sources 81, 887–890 (1999)

    Article  Google Scholar 

  23. Birkl, C.R., Roberts, M.R., McTurk, E., Bruce, P.G., Howey, D.A.: Degradation diagnostics for lithium ion cells. J. Power Sources 341, 373–386 (2017)

    Article  Google Scholar 

  24. Su, M., Huang, G., Wang, S., Wang, Y., Wang, H.: High safety separators for rechargeable lithium batteries. Sci. China Chem. 64, 1131–1156 (2021)

    Article  Google Scholar 

  25. **ang, Y., Li, J., Lei, J., Liu, D., **e, Z., Qu, D., Li, K., Deng, T., Tang, H.: Advanced separators for lithium-ion and lithium–sulfur batteries: a review of recent progress. Chemsuschem 9, 3023–3039 (2016)

    Article  Google Scholar 

  26. Lin, T., Chen, Z., Zhou, S.: Voltage-correlation based multi-fault diagnosis of lithium-ion battery packs considering inconsistency. J. Clean. Prod. 336, 130358 (2022)

    Article  Google Scholar 

  27. Naguib, M., Kollmeyer, P., Emadi, A.: Lithium-ion battery pack robust state of charge estimation, cell inconsistency, and balancing: review. IEEE Access 9, 50570–50582 (2021)

    Article  Google Scholar 

  28. Ohsaki, T., Kishi, T., Kuboki, T., Takami, N., Shimura, N., Sato, Y., Sekino, M., Satoh, A.: Overcharge reaction of lithium-ion batteries. J. Power Sources 146, 97–100 (2005)

    Article  Google Scholar 

  29. Ma, T., Wu, S., Wang, F., Lacap, J., Lin, C., Liu, S., Wei, M., Hao, W., Wang, Y., Park, J.: Degradation mechanism study and safety hazard analysis of overdischarge on commercialized lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 56086–56094 (2020)

    Article  Google Scholar 

  30. Krupp, A., Beckmann, R., Diekmann, T., Ferg, E., Schuldt, F., Agert, C.: Calendar aging model for lithium-ion batteries considering the influence of cell characterization. J. Energy Storage 45, 103506 (2022)

    Article  Google Scholar 

  31. Aurbach, D., Zinigrad, E., Cohen, Y., Teller, H.: A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002)

    Article  Google Scholar 

  32. Zhou, C., Su, Z., Gao, X., Cao, R., Yang, S., Liu, X.: Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design. Rare Met. 41, 14–20 (2022)

    Article  Google Scholar 

  33. Broussely, M., Herreyre, S., Biensan, P., Kasztejna, P., Nechev, K., Staniewcz, R.: Aging mechanism in Li ion cells and calendar life predictions. J. Power Sources 97–98, 13–21 (2001)

    Article  Google Scholar 

  34. Hendricks, C., Williard, N., Mathew, S., Pecht, M.: A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries. J. Power Sources 297, 113–120 (2015)

    Article  Google Scholar 

  35. Balakrishnan, P.G., Ramesh, R., Prem Kumar, T.: Safety mechanisms in lithium-ion batteries. J. Power Sources 155, 401–414 (2006)

    Article  Google Scholar 

  36. Lyu, D., Ren, B., Li, S.: Failure modes and mechanisms for rechargeable Lithium-based batteries: a state-of-the-art review. Acta Mech. 230, 701–727 (2019)

    Article  Google Scholar 

  37. Zhang, L., Gao, X., Liu, X., Zhang, Z., Cao, R., Cheng, H., Wang, M., Yan, X., Yang, S.: CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications. Rare Met. 41, 1477–1489 (2022)

    Article  Google Scholar 

  38. Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new results. Automatica 26, 459–474 (1990)

    Article  MATH  Google Scholar 

  39. Kang, Y., Yang, X., Zhou, Z., Duan, B., Liu, Q., Shang, Y., Zhang, C.: A comparative study of fault diagnostic methods for lithium-ion batteries based on a standardized fault feature comparison method. J. Clean. Prod. 278, 123424 (2021)

    Article  Google Scholar 

  40. Li, X., Dai, K., Wang, Z., Han, W.: Lithium-ion batteries fault diagnostic for electric vehicles using sample entropy analysis method. J. Energy Storage 27, 101121 (2020)

    Article  Google Scholar 

  41. Qiu, Y., Cao, W., Peng, P., Jiang, F.: A novel entropy-based fault diagnosis and inconsistency evaluation approach for lithium-ion battery energy storage systems. J. Energy Storage 41, 102852 (2021)

    Article  Google Scholar 

  42. Xue, Q., Li, G., Zhang, Y., Shen, S., Chen, Z., Liu, Y.: Fault diagnosis and abnormality detection of lithium-ion battery packs based on statistical distribution. J. Power Sources 482, 228964 (2021)

    Article  Google Scholar 

  43. Zhou, D., Zheng, W., Chen, S., Fu, P., Zhu, H., Song, B., Qu, X., Wang, T.: Research on state of health prediction model for lithium batteries based on actual diverse data. Energy 230, 120851 (2021)

    Article  Google Scholar 

  44. Kim, T., Kang, D., Oh, C., Kim, M., Baek, J.: Efficient on-board health monitoring for multicell lithium-ion battery systems using Gaussian process clustering. In: 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 5604–5609 (2018). https://doi.org/10.1109/ECCE.2018.8557769

  45. Li, X., Wang, Z.: A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles. Measurement 116, 402–411 (2018)

    Article  Google Scholar 

  46. **a, B., Shang, Y., Nguyen, T., Mi, C.: External short circuit fault diagnosis based on supervised statistical learning. In: 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), pp. 1–5 (2017). https://doi.org/10.1109/ITEC-AP.2017.8080830

  47. Wadi, A., Abdel-Hafez, M., Hussein, A.: Mitigating the effect of noise uncertainty on the online state-of-charge estimation of Li-ion battery cells. IEEE Trans. Veh. Technol. 68, 8593–8600 (2019)

    Article  Google Scholar 

  48. **a, B., Shang, Y., Nguyen, T., Mi, C.: A correlation based detection method for internal short circuit in battery packs. In: 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2363–2368 (2017). https://doi.org/10.1109/APEC.2017.7931030

  49. Kang, Y., Duan, B., Zhou, Z., Shang, Y., Zhang, C.: Online multi-fault detection and diagnosis for battery packs in electric vehicles. Appl. Energy 259, 114170 (2020)

    Article  Google Scholar 

  50. Li, W.H., Fan, Y., Ringbeck, F., Jost, D., Sauer, D.U.: Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression. Appl. Energy 306, 118114 (2022)

    Article  Google Scholar 

  51. Barzacchi, L., Lagnoni, M., Rienzo, R.D., Bertei, A., Baronti, F.: Enabling early detection of lithium-ion battery degradation by linking electrochemical properties to equivalent circuit model parameters. J. Energy Storage 50, 104213 (2022)

    Article  Google Scholar 

  52. **ong, R., Yang, R., Chen, Z., Shen, W., Sun, F.: Online fault diagnosis of external short circuit for lithium-ion battery pack. IEEE Trans. Ind. Electron. 67, 1081–1091 (2020)

    Article  Google Scholar 

  53. Seo, M., Park, M., Song, Y., Kim, S.W.: Online detection of soft internal short circuit in lithium-ion batteries at various standard charging ranges. IEEE Access 8, 70947–70959 (2020)

    Article  Google Scholar 

  54. **ong, R., Tian, J., Shen, W., Sun, F.: A novel fractional order model for state of charge estimation in lithium ion batteries. IEEE Trans. Veh. Technol. 68, 4130–4139 (2019)

    Article  Google Scholar 

  55. Kong, S., Saif, M., Cui, G.: Estimation and fault diagnosis of lithium-ion batteries: a fractional-order system approach. Math. Probl. Eng. 2018, 8705363 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. He, L., Wang, Y., Wei, Y., Wang, M., Hu, X., Shi, Q.: An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery. Energy 244, 122627 (2022)

    Article  Google Scholar 

  57. Tian, J., Wang, Y., Yang, D., Zhang, X., Chen, Z.: A real-time insulation detection method for battery packs used in electric vehicles. J. Power Sources 385, 1–9 (2018)

    Article  Google Scholar 

  58. Li, G., Liu, C., Wang, E., Wang, L.: State of charge estimation for lithium-ion battery based on improved cubature Kalman filter algorithm. Automot. Innov. 4, 189–200 (2021)

    Article  Google Scholar 

  59. Hu, J., Wei, Z., He, H.: An online adaptive internal short circuit detection method of lithium-ion battery. Automot. Innov. 4, 93–102 (2021)

    Article  Google Scholar 

  60. Gao, W., Zheng, Y., Ouyang, M., Li, J., Lai, X., Hu, X.: Micro-short-circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model. IEEE Trans. Ind. Electron. 66, 2132–2142 (2019)

    Article  Google Scholar 

  61. Wei, J., Dong, G., Chen, Z.: Lyapunov-based thermal fault diagnosis of cylindrical lithium-ion batteries. IEEE Trans. Ind. Electron. 67, 4670–4679 (2020)

    Article  Google Scholar 

  62. Tran, M., Fowler, M.: Sensor fault detection and isolation for degrading lithium-ion batteries in electric vehicles using parameter estimation with recursive least squares. Batteries 6, 1 (2020)

    Article  Google Scholar 

  63. Ma, M., Duan, Q., Zhao, C., Wang, Q., Sun, J.: Faulty characteristics and identification of increased connecting and internal resistance in parallel-connected lithium-ion battery pack for electric vehicles. IEEE Trans. Veh. Technol. 69, 10797–10808 (2020)

    Article  Google Scholar 

  64. Hu, J., He, H., Wei, Z., Li, Y.: Disturbance-immune and aging-robust internal short circuit diagnostic for lithium-ion battery. IEEE Trans. Ind. Electron. 69, 1988–1999 (2022)

    Article  Google Scholar 

  65. Cadini, F., Sbarufatti, C., Cancelliere, F., Giglio, M.: State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters. Appl. Energy 235, 661–672 (2019)

    Article  Google Scholar 

  66. Yan, W., Zhang, B., Dou, W., Liu, D., Peng, Y.: Low-cost adaptive lebesgue sampling particle filtering approach for real-time Li-ion battery diagnosis and prognosis. IEEE Trans. Autom. Sci. Eng. 14, 1601–1611 (2017)

    Article  Google Scholar 

  67. Meng, J., Boukhnifer, M., Delpha, C., Diallo, D.: Incipient short-circuit fault diagnosis of lithium-ion batteries. J. Energy Storage 31, 101658 (2020)

    Article  Google Scholar 

  68. Yang, R., **ong, R., He, H., Chen, Z.: A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application. J. Clean. Prod. 187, 950–959 (2018)

    Article  Google Scholar 

  69. Pan, Y., Feng, X., Zhang, M., Han, X., Lu, L., Ouyang, M.: Internal short circuit detection for lithium-ion battery pack with parallel-series hybrid connections. J. Clean. Prod. 255, 120277 (2020)

    Article  Google Scholar 

  70. Feng, X., Pan, Y., He, X., Wang, L., Ouyang, M.: Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. J. Energy Storage 18, 26–39 (2018)

    Article  Google Scholar 

  71. Chow, E., Willsky, A.: Analytical redundancy and the design of robust failure detection systems. IEEE Trans. Automat. Control 29, 603–614 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  72. Pan, F., Ma, B., Gao, Y., Xu, M., Gong, D.: Parity space approach for fault diagnosis of lithium-ion battery sensor for electric vehicles. Automot. Eng. 41, 831–838 (2019)

    Google Scholar 

  73. **ong, R., Sun, W., Yu, Q., Sun, F.: Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles. Appl. Energy 279, 115855 (2020)

    Article  Google Scholar 

  74. Jiang, J., Cong, X., Li, S., Zhang, C., Zhang, W., Jiang, Y.: A hybrid signal-based fault diagnosis method for lithium-ion batteries in electric vehicles. IEEE Access 9, 19175–19186 (2021)

    Article  Google Scholar 

  75. Pan, Y., Ran, D., Kuang, K., Feng, X., Han, X., Lu, L., Ouyang, M.: Novel non-destructive detection methods of lithium plating in commercial lithium-ion batteries under dynamic discharging conditions. J. Power Sources 524, 231075 (2022)

    Article  Google Scholar 

  76. Xu, J., Mei, X., Wang, X., Fu, Y., Zhao, Y., Wang, J.: A relative state of health estimation method based on wavelet analysis for lithium-ion battery cells. IEEE Trans. Ind. Electron. 68, 6973–6981 (2021)

    Article  Google Scholar 

  77. Khan, M., Rahman, M.: Implementation of wavelet-based controller for battery storage system of hybrid electric vehicles. IEEE Trans. Ind. Appl. 47, 2241–2249 (2011)

    Article  Google Scholar 

  78. Cheng, Y., Zhang, X., Wang, X., Li, J.: Battery state of charge estimation based on composite multiscale wavelet transform. Energies 15, 2064 (2022)

    Article  Google Scholar 

  79. Peng, J., Wang, R., Liao, H., Zhou, Y., Li, H., Wu, Y., Huang, Z.: A real-time layer-adaptive wavelet transform energy distribution strategy in a hybrid energy storage system of EVs. Energies 12, 440 (2019)

    Article  Google Scholar 

  80. Yao, L., **ao, Y., Gong, X., Hou, J., Chen, X.: A novel intelligent method for fault diagnosis of electric vehicle battery system based on wavelet neural network. J. Power Sources 453, 227870 (2020)

    Article  Google Scholar 

  81. Zhao, J., Wang, Z., Shen, H., Liao, P.: Research on fault diagnosis method of electric vehicle battery system based on wavelet-RBF neural network. 2018 2nd International Conference on Artificial Intelligence Applications and Technoledges (AIAAT 2018) 435 (2018)

  82. Zhang, L., Fan, W., Wang, Z., Li, W., Sauer, D.: Battery heating for lithium-ion batteries based on multi-stage alternative currents. J. Energy Storage 32, 101885 (2020)

    Article  Google Scholar 

  83. Tröltzsch, U., Kanoun, O., Tränkler, H.: Characterizing aging effects of lithium ion batteries by impedance spectroscopy. Electrochim. Acta 51, 1664–1672 (2006)

    Article  Google Scholar 

  84. Zhang, Y., Tang, Q., Zhang, Y., Wang, J., Stimming, U., Lee, A.: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat. Commun. 11, 1706 (2020)

    Article  Google Scholar 

  85. Hu, X., Zhang, K., Liu, K., Lin, X., Dey, S., Onori, S.: Advanced fault diagnosis for lithium-ion battery systems: a review of fault mechanisms, fault features, and diagnosis procedures. IEEE Ind. Electron. Mag. 14, 65–91 (2020)

    Article  Google Scholar 

  86. Yang, J., Jung, J., Ghorbanpour, S., Han, S.: Driven fault diagnosis and cause analysis of battery pack with real data. Energies 15, 1647 (2022)

    Article  Google Scholar 

  87. Schmid, M., Kneidinger, H., Endisch, C.: Data-driven fault diagnosis in battery systems through cross-cell monitoring. IEEE Sens. J. 21, 1829–1837 (2021)

    Article  Google Scholar 

  88. Zhao, Y., Liu, P., Wang, Z., Zhang, L., Hong, J.: Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods. Appl. Energy 207, 354–362 (2017)

    Article  Google Scholar 

  89. Zhang, W., Li, X., Li, X.: Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation. Measurement 164, 108052 (2020)

    Article  Google Scholar 

  90. Lee, J., Kim, H., Lee, I.: Multilayer neural network-based battery module SOH diagnosis. Int. J. Eng. Res. Technol. 13, 316–319 (2020)

    Article  Google Scholar 

  91. Yang, N., Song, Z., Amini, M., Hofmann, H.: Internal short circuit detection for parallel-connected battery cells using convolutional neural network. Automot. Innov. 5, 107–120 (2022)

    Article  Google Scholar 

  92. Li, R., Xu, S., Li, S., Zhou, Y., Liu, X., Yao, J.: State of charge prediction algorithm of lithium-ion battery based on PSO-SVR cross validation. IEEE Access 8, 10234–10242 (2020)

    Article  Google Scholar 

  93. Deng, F., Bian, Y., Zheng, H.: Fault diagnosis for electric vehicle lithium batteries using a multi-classification support vector machine. Electr. Eng. (2021). https://doi.org/10.1007/s00202-021-01426-y

    Article  Google Scholar 

  94. Biddle, L., Fallah, S.: A novel fault detection, identification and prediction approach for autonomous vehicle controllers using SVM. Automot. Innov. 4, 301–314 (2021)

    Article  Google Scholar 

  95. Yao, L., Fang, Z., **ao, Y., Hou, J., Fu, Z.: An intelligent fault diagnosis method for lithium battery systems based on grid search support vector machine. Energy 214, 118866 (2021)

    Article  Google Scholar 

  96. Feng, X., Weng, C., He, X., Han, X., Lu, L., Ren, D., Ouyang, M.: Online state-of-health estimation for Li-ion battery using partial charging segment based on support vector machine. IEEE Trans. Veh. Technol. 68, 8583–8592 (2019)

    Article  Google Scholar 

  97. Wu, C., Zhu, C., Ge, Y.: A new fault diagnosis and prognosis technology for high-power lithium-ion battery. IEEE Trans. Plasma Sci. 45, 1533–1538 (2017)

    Article  Google Scholar 

  98. Li, R., Li, S., Zhou, Y.: Fault diagnosis of lithium battery based on fuzzy Bayesian network. Int. J. Perform. Eng. 14, 2302–2311 (2018)

    Google Scholar 

  99. Pan, W., Chen, Q., Zhu, M., Tang, J., Wang, J.: A data-driven fuzzy information granulation approach for battery state of health forecasting. J. Power Sources 475, 228716 (2020)

    Article  Google Scholar 

  100. Akula, S., Salehfar, H.: Comprehensive reliability modeling of grid-tied microgrids using fault tree analysis. In: 2020 52nd North American Power Symposium (NAPS), pp. 1–6 (2021). https://doi.org/10.1109/NAPS50074.2021.9449760

  101. Hu, G., Huang, P., Bai, Z., Wang, Q., Qi, K.: Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery. eTransportation 10, 100140 (2021)

    Article  Google Scholar 

  102. Gao, H., Meng, X., Qian, K., Zhang, W.: Research on intelligent diagnosis strategy and treatment method of ev charging fault. In: 2019 5th International Conference on Control, Automation and Robotics (ICCAR), pp. 47–50 (2019). https://doi.org/10.1109/ICCAR.2019.8813479

  103. Guo, Z., **ong, Q., Liang, B., Zhao, J., Zhang, C., Zhu, L., Ji, S.: Overcharge detection of lithium-ion battery based on vibration signal. In: 2020 4th International Conference HVDC, (HVDC 2020), pp. 1258–1262 (2020). https://doi.org/10.1109/HVDC50696.2020.9292719

  104. Yang, S., He, R., Zhang, Z., Cao, Y., Gao, X., Liu, X.: CHAIN: cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management. Matter 3, 27–41 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 52102470 and No. U1864213)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ma.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Academic Editor: Lei Zhang

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, M., Cao, R. et al. Review of Abnormality Detection and Fault Diagnosis Methods for Lithium-Ion Batteries. Automot. Innov. 6, 256–267 (2023). https://doi.org/10.1007/s42154-022-00215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42154-022-00215-y

Keywords

Navigation