Log in

Tunable circularly polarized luminescence of hybrid supramolecular nanofibers based on a cinnamic acid gelator and spiropyran by photoisomerization

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Circularly polarized luminescence materials have attracted plenty of interest by virtue of their fascinating characteristics as well as prospective applications in information encryption, optoelectronic devices, and so on. However, the spatiotemporal modulation of circularly polarized luminescence materials by using light irradiation is still challenging. Herein, we have constructed a kind of hybrid supramolecular nanofibers with tunable circularly polarized luminescence based on photoresponsive chiral cinnamic acid gelator and achiral spiropyran through photoisomerization. The chiral cinnamic acid gelator could self-assemble into nanofiber structures by hydrogen bonding, hydrophobic interaction and π-π stacking, displaying intense right-handed circularly polarized luminescence at 400 nm. However, UV irradiation causes the trans–cis isomerization of the cinnamic acid moiety, resulting in the transformation of nanofibers into rod-like structures and the loss of circularly polarized luminescence signal. In view of this problem, we discovered that the photoisomerized spiropyran can help with the photostability of the nanofibers as well as tuning of their CPL emission, as spiropyran molecule could be transformed into its merocyanine state by ring-opening reaction under 254 nm UV irradiation following with the formation of chiral merocyanine aggregates on the surfaces of the nanofibers. The as-obtained hybrid nanofibers emit both right-handed circularly polarized luminescence at 400 nm and left-handed circularly polarized luminescence at 700 nm with a high luminescence dissymmetry factor. The present study provides a new hybrid strategy to control the photostability as well as regulate the circularly polarized luminescence performance of soft materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Liu YP, **ng PY (2023) Circularly polarized light responsive materials: Design strategies and applications. Adv Mater 35:e2300968. https://doi.org/10.1002/adma.202300968

    Article  PubMed  CAS  Google Scholar 

  2. Gong Z-L, Zhu XF, Zhou ZH, Zhang S-W, Yang D, Zhao B, Zhang Y-P, Deng JP, Cheng YX, Zheng Y-X, Zang S-Q, Kuang H, Duan PF, Yuan MJ, Chen C-F, Zhao YS, Zhong Y-W, Tang BZ, Liu MH (2021) Frontiers in circularly polarized luminescence: Molecular design, self-assembly, nanomaterials, and applications. Sci China Chem 64(12):2060–2104. https://doi.org/10.1007/s11426-021-1146-6

    Article  CAS  Google Scholar 

  3. Yang XF, Gao XQ, Zheng Y-X, Kuang H, Chen C-F, Liu MH, Duan PF, Tang ZY (2023) Recent progress of circularly polarized luminescence materials from chinese perspectives. CCS Chem 5(12):2760–2789. https://doi.org/10.31635/ccschem.023.202303346

    Article  CAS  Google Scholar 

  4. Di Nuzzo D, Kulkarni C, Zhao B, Smolinsky E, Tassinari F, Meskers SCJ, Naaman R, Meijer EW, Friend RH (2017) High circular polarization of electroluminescence achieved via self-assembly of a light-emitting chiral conjugated polymer into multidomain cholesteric films. ACS Nano 11(12):12713–12722. https://doi.org/10.1021/acsnano.7b07390

    Article  PubMed  CAS  Google Scholar 

  5. Geng ZX, Zhang YX, Zhang Y, Li Y, Quan YW, Cheng YX (2021) Circularly polarized electroluminescence from an achiral fluorophore induced by co-assembly with chiral polymers. J Mater Chem C 9(36):12141–12147. https://doi.org/10.1039/d1tc01948a

    Article  CAS  Google Scholar 

  6. Imai Y, Nakano Y, Kawai T, Yuasa J (2018) A smart sensing method for object identification using circularly polarized luminescence from coordination-driven self-assembly. Angew Chem Int Ed 57(29):8973–8978. https://doi.org/10.1002/anie.201803833

    Article  CAS  Google Scholar 

  7. Song FY, Xu Z, Zhang QS, Zhao Z, Zhang HK, Zhao WJ, Qiu ZJ, Qi CX, Zhang H, Sung HHY, Williams ID, Lam JWY, Zhao ZJ, Qin AJ, Ma DG, Tang BZ (2018) Highly efficient circularly polarized electroluminescence from aggregation-induced emission luminogens with amplified chirality and delayed fluorescence. Adv Funct Mater 28(17):1800051. https://doi.org/10.1002/adfm.201800051

    Article  CAS  Google Scholar 

  8. Zhan XQ, Xu FF, Zhou ZH, Yan YL, Yao JN, Zhao YS (2021) 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays. Adv Mater 33(37):2104418. https://doi.org/10.1002/adma.202104418

    Article  CAS  Google Scholar 

  9. Zheng HZ, Li WR, Li W, Wang XJ, Tang ZY, Zhang SXA, Xu Y (2018) Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications. Adv Mater 30(13):1705948. https://doi.org/10.1002/adma.201705948

    Article  CAS  Google Scholar 

  10. Zheng HZ, Ju B, Wang XJ, Wang WH, Li MJ, Tang ZY, Zhang SXA, Xu Y (2018) Circularly polarized luminescent carbon dot nanomaterials of helical superstructures for circularly polarized light detection. Adv Opt Mater 6(23):1801246. https://doi.org/10.1002/adom.201801246

    Article  CAS  Google Scholar 

  11. Chen SB, Jiang SJ, Qiu JB, Guo HY, Yang FF (2020) Dual-responding circularly polarized luminescence based on mechanically and thermally induced assemblies of cyano-distyrylbenzene hydrogen bonding liquid crystals. Chem Commun 56(56):7745–7748. https://doi.org/10.1039/c9cc09826g

    Article  CAS  Google Scholar 

  12. Han DX, Li CX, ** X, Zhou J, Xu YL, Jiao TF, Duan PF (2021) Tunable circularly polarized luminescence of excited-state-proton-transfer-based chiral guanidine. Adv Photonics Res 3(3):2100287. https://doi.org/10.1002/adpr.202100287

    Article  CAS  Google Scholar 

  13. Wang Y-J, Shi X-Y, **ng PY, Zang S-Q (2023) Metallophilic interactions drive supramolecular chirality evolution and amplify circularly polarized luminescence. JACS Au 3(2):565–574. https://doi.org/10.1021/jacsau.2c00653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Xu L, Wang C, Li YX, Xu XH, Zhou L, Liu N, Wu ZQ (2020) Crystallization-driven asymmetric helical assembly of conjugated block copolymers and the aggregation induced white-light emission and circularly polarized luminescence. Angew Chem Int Ed 59(38):16675–16682. https://doi.org/10.1002/anie.202006561

    Article  CAS  Google Scholar 

  15. Du C, Li ZJ, Zhu XF, Ouyang GH, Liu MH (2022) Hierarchically self-assembled homochiral helical microtoroids. Nat Nanotechnol 17(12):1294–1302. https://doi.org/10.1038/s41565-022-01234-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH (2022) Circularly polarized luminescence active supramolecular nanotubes based on ptiicomplexes that undergo dynamic morphological transformation and helicity inversion. Angew Chem Int Ed 61(38):e202207310. https://doi.org/10.1002/anie.202207310

    Article  CAS  Google Scholar 

  17. Li PP, Gao XB, Zhao B, Pan K, Deng JP (2022) Multi-color tunable and white circularly polarized luminescent composite nanofibers electrospun from chiral helical polymer. Adv Fiber Mater 4(6):1632–1644. https://doi.org/10.1007/s42765-022-00196-x

    Article  CAS  Google Scholar 

  18. Guo Q, Zhang MJ, Tong Z, Zhao SS, Zhou YJ, Wang YX, ** S, Zhang J, Yao H-B, Zhu MZ, Zhuang TT (2023) Multimodal-responsive circularly polarized luminescence security materials. J Am Chem Soc 145(7):4246–4253. https://doi.org/10.1021/jacs.2c13108

    Article  CAS  Google Scholar 

  19. Dai L, Js Lu, Kong FG, Liu KF, Wei HG, Si CL (2019) Reversible photo-controlled release of bovine serum albumin by azobenzene-containing cellulose nanofibrils-based hydrogel. Adv Compos Hybrid Mater 2(3):462–470. https://doi.org/10.1007/s42114-019-00112-9

    Article  CAS  Google Scholar 

  20. Hashimoto Y, Nakashima T, Kuno J, Yamada M, Kawai T (2018) Dynamic modulation of circularly polarized luminescence in photoresponsive assemblies. ChemNanoMat 4(8):815–820. https://doi.org/10.1002/cnma.201800124

    Article  CAS  Google Scholar 

  21. ** X, Yang D, Jiang YQ, Duan PF, Liu MH (2018) Light-triggered self-assembly of a cyanostilbene-conjugated glutamide from nanobelts to nanotoroids and inversion of circularly polarized luminescence. Chem Commun 54(36):4513–4516. https://doi.org/10.1039/C8CC00893K

    Article  CAS  Google Scholar 

  22. Shi YH, Han JL, ** X, Miao WG, Zhang Y, Duan PF (2022) Chiral luminescent liquid crystal with multi-state-reversibility: Breakthrough in advanced anti-counterfeiting materials. Adv Sci 9(20):e2201565. https://doi.org/10.1002/advs.202201565

    Article  CAS  Google Scholar 

  23. Han DX, Jiao TF (2022) Reversible chiral optical switching based on co-assembled spiropyran gels. Langmuir 38(45):13668–13673. https://doi.org/10.1021/acs.langmuir.2c01473

    Article  PubMed  CAS  Google Scholar 

  24. Miao W, Wang S, Liu MH (2017) Reversible quadruple switching with optical, chiroptical, helicity, and macropattern in self-assembled spiropyran gels. Adv Funct Mater 27(29):1701368. https://doi.org/10.1002/adfm.201701368

    Article  CAS  Google Scholar 

  25. Liu GF, Sheng JH, Teo WL, Yang GB, Wu HW, Li YX, Zhao YL (2018) Control on dimensions and supramolecular chirality of self-assemblies through light and metal ions. J Am Chem Soc 140(47):16275–16283. https://doi.org/10.1021/jacs.8b10024

    Article  PubMed  CAS  Google Scholar 

  26. Yao LF, Fu K, Liu GF (2023) Solvent-directed hierarchical self-assembly of tetraphenylpyrazine-cholesterol with amplified circularly polarized luminescence. ACS Appl Mater Interfaces 15(34):40817–40827. https://doi.org/10.1021/acsami.3c10358

    Article  PubMed  CAS  Google Scholar 

  27. Basak S, Nandi N, Baral A, Banerjee A (2015) Tailor-made design of J-or H-aggregated naphthalenediimide-based gels and remarkable fluorescence turn on/off behaviour depending on solvents. Chem Commun 51(4):780–783. https://doi.org/10.1039/c4cc06680d

    Article  CAS  Google Scholar 

  28. **ng PY, Tham HP, Li PZ, Chen HZ, **ang HJ, Zhao YL (2018) Environment-adaptive coassembly/self-sorting and stimulus-responsiveness transfer based on cholesterol building blocks. Adv Sci 5(1):1700552. https://doi.org/10.1002/advs.201700552

    Article  CAS  Google Scholar 

  29. Jiang HJ, Jiang YQ, Han JL, Zhang L, Liu MH (2019) Helical nanostructures: Chirality transfer and a photodriven transformation from superhelix to nanokebab. Angew Chem Int Ed 58(3):785–790. https://doi.org/10.1002/anie.201811060

    Article  CAS  Google Scholar 

  30. Harada N, Chen S-ML, Nakanishi K (1975) Quantitative definition of exciton chirality and the distant effect in the exciton chirality method. J Am Chem Soc 97(19):5345–5352. https://doi.org/10.1021/ja00852a005

    Article  CAS  Google Scholar 

  31. Yang D, Duan PF, Zhang L, Liu MH (2017) Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nat Commun 8(1):15727. https://doi.org/10.1038/ncomms15727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yao LF, Fu K, Wang XJ, He ML, Zhang WN, Liu PY, He YP, Liu GF (2023) Metallophilic interaction-mediated hierarchical assembly and temporal-controlled dynamic chirality inversion of metal-organic supramolecular polymers. ACS Nano 17(3):2159–2169. https://doi.org/10.1021/acsnano.2c08315

    Article  PubMed  CAS  Google Scholar 

  33. Hu Y, Huang ZZ, Willner I, Ma X (2024) Multicolor circularly polarized luminescence of a single-component system revealing multiple information encryption. Chinese Chem Soc Chem 6(2):518–527. https://doi.org/10.31635/ccschem.023.202302904

    Article  CAS  Google Scholar 

  34. Yang L, Wang F, D-iY A, Feng CL (2019) Achiral isomers controlled circularly polarized luminescence in supramolecular hydrogels. Nanoscale 11(30):14210–14215. https://doi.org/10.1039/c9nr05033g

    Article  PubMed  CAS  Google Scholar 

  35. Zeng JQ, Qi PF, Wang Y, Liu YH, Sui KY (2021) Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal. J Hazard Mater 410:124633. https://doi.org/10.1016/j.jhazmat.2020.124633

    Article  PubMed  CAS  Google Scholar 

  36. Feng Y, Li YC, Almalki ASA, Meng XN, Alhadhrami A, Ye XM, Ibrahim MM, Guo X, Algadi H, Huang MN, Winchester W, Wang Z (2022) Synthesis and characterization of poly(butanediol sebacate-butanediol) terephthalate (PBSeT) reinforced by hydrogen bond containing amide group, with good mechanical properties and improved water vapor barrier. Adv Compos Hybrid Mater 5(3):2051–2065. https://doi.org/10.1007/s42114-022-00542-y

    Article  CAS  Google Scholar 

  37. Jiang HJ, Jiang YQ, Zhang L, Guo ZX, Liu MH (2018) Symmetry breaking and amplification in a self-assembled helix from achiral trans-3-nitrocinnamic acid. J Phys Chem C 122(23):12559–12565. https://doi.org/10.1021/acs.jpcc.8b03412

    Article  CAS  Google Scholar 

  38. Kuang G-C, Ji Y, Jia X-R, Li Y, Chen E-Q, Zhang Z-X, Wei Y (2009) Photoresponsive organogels: An amino acid-based dendron functionalized with p-nitrocinnamate. Tetrahedron 65(17):3496–3501. https://doi.org/10.1016/j.tet.2009.02.038

    Article  CAS  Google Scholar 

  39. Gong ZL, Li ZQ, Zhong YW (2022) Circularly polarized luminescence of coordination aggregates. Aggregate 3(5):e177. https://doi.org/10.1002/agt2.177

    Article  CAS  Google Scholar 

  40. Wang L, Xue YX, Cui MH, Huang YM, Xu HY, Qin CC, Yang JE, Dai HT, Yuan MJ (2020) A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew Chem Int Ed 59(16):6442–6450. https://doi.org/10.1002/anie.201915912

    Article  CAS  Google Scholar 

  41. Zhang LY, ** YS, Wang YK, Li WJ, Guo ZL, Zhang JY, Yuan L, Zheng C, Zheng YX, Chen RF (2023) High-quality circularly polarized organic afterglow from nonconjugated amorphous chiral copolymers. ACS Appl Mater Interfaces 15(42):49623–49632. https://doi.org/10.1021/acsami.3c10605

    Article  PubMed  CAS  Google Scholar 

  42. Bao YL, Zhang G, Wang NW, Pan MH, Zhang W (2023) Circularly polarized luminescent organogels based on fluorescence resonance energy transfer in an achiral polymer system. J Mater Chem C 11(7):2475–2479. https://doi.org/10.1039/d2tc05101j

    Article  CAS  Google Scholar 

  43. Dai YK, Zhang ZW, Wang D, Li TL, Ren YZ, Chen JQ, Feng LY (2023) Machine-learning-driven G-quartet-based circularly polarized luminescence materials. Adv Mater 36(4):2310455. https://doi.org/10.1002/adma.202310455

    Article  CAS  Google Scholar 

  44. Yuan W, Chen LT, Yuan CT, Zhang ZD, Chen XK, Zhang XD, Guo JJ, Qian C, Zhao ZJ, Zhao YL (2023) Cooperative supramolecular polymerization of styrylpyrenes for color-dependent circularly polarized luminescence and photocycloaddition. Nat Commun 14(1):8022–8032. https://doi.org/10.1038/s41467-023-43830-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos.22202113), the Natural Science Foundation of Shandong Province, China (Nos.ZR2021QB006, Nos.2022HWYQ-083, Nos.ZR2023ME019), the Taishan Scholar Program of Shandong Province (Nos.tsqnz20221136), the China Postdoctoral Science Foundation (Nos.2021M701809, Nos.2023T160347), the State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University) (Nos.GZRC202012), and the Qingdao Applied Research Project.

Author information

Authors and Affiliations

Authors

Contributions

Qiuya Yang, Xueli Liu, and Zhaocun Shen designed the experiments. Qiuya Yang, Zhichao Xu, and **nnuo Wu conducted experiments and drafted the manuscript. Min Lin, Zhaocun Shen, and Kunyan Sui supervised the project. Qiuya Yang, Xueli Liu, Zhichao Xu, **nnuo Wu, Gemeng Liang, Min Lin, Zhaocun Shen, and Kunyan Sui discussed the experiments and results. All authors have given approval for the final version of the manuscript.

Corresponding authors

Correspondence to Min Lin, Zhaocun Shen or Kunyan Sui.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 17.3 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Liu, X., Xu, Z. et al. Tunable circularly polarized luminescence of hybrid supramolecular nanofibers based on a cinnamic acid gelator and spiropyran by photoisomerization. Adv Compos Hybrid Mater 7, 121 (2024). https://doi.org/10.1007/s42114-024-00931-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00931-5

Keywords

Navigation