Log in

Weakly negative permittivity: metal–organic frameworks derived cobalt nanoparticles encapsulated by positive-hexagon-shaped carbon nanosheets

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Epsilon-negative metamaterials (ENMs) have gained significant attention due to their promising applications in various fields, such as microwave absorption or shielding, radio transmission, and solar energy harvesting. However, for metal-based ENMs, negative permittivity is usually huge accompanied by high frequency dispersion behavior, which is difficult to achieve impedance matching and performance improvement. In this work, Co nanoparticles (NPs) encapsulated into positive-hexagon-shaped carbon nanosheets that were covered by carbon nanotubes (Co@PHCNTs) were synthesized by carbonizing the zeolitic imidazolate frameworks (ZIF), and negative permittivity with weak value and low-frequency dispersion simultaneously was achieved for the first time in metal-based ENMs by fabricating polyurethane/Co@PHCNT metamaterials. The carbon nanosheets with two-dimensional structure were beneficial to form interconnected networks in the metamaterials, and carbon nanosheets were able to reduce electron concentration of Co NPs, resulting in weakly negative permittivity value. Besides, the generation of CNTs on surfaces from carbon nanosheets greatly facilitated electron transport and improved electron mobility, leading to low-frequency dispersion behavior.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated from the current study will be provided by the corresponding author on reasonable request.

References

  1. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–89. https://doi.org/10.1126/science.1058847

  2. Schurig D, Mock JJ, Justice B, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980. https://doi.org/10.1126/science.1133628

  3. Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M, Isaacs R, Klein A-M, Kremen C, M'gonigle LK, Rader R (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun 6:7414. https://doi.org/10.1038/ncomms8414

  4. Fan G, Wang Z, Sun K, Liu Y, Fan R (2021) Doped ceramics of indium oxides for negative permittivity materials in MHz-kHz frequency regions. J Mater Sci Technol 61:125–131. https://doi.org/10.1016/j.jmst.2020.06.013

  5. **e P, Zhang Z, Wang Z, Sun K, Fan R (2019) Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research. https://doi.org/10.34133/2019/1021368

  6. Tsutaoka T, Fukuyama K, Kinoshita H, Kasagi T, Yamamoto S, Hatakeyama K (2013) Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range. Appl Phys Lett 103:261906. https://doi.org/10.1063/1.4858976

  7. Sun K, Yang X, Lei Y, Du H, Dudziak T, Fan R (2023) Core-shell structural design and microwave absorption enhancement of multi-dimensional graphene oxide@polypyrrole/carbonyl iron fiber nanocomposites. J Alloys Compd 930:167446. https://doi.org/10.1016/j.jallcom.2022.167446

  8. Qu Y, Wu H, **e P, Zeng N, Chen Y, Gong X, Yang J, Peng Q, **e Y, Qi X (2023) Carbon nanotube-carbon black/CaCu3Ti4O12 ternary metacomposites with tunable negative permittivity and thermal conductivity fabricated by spark plasma sintering. Rare Met. https://doi.org/10.1007/s12598-023-02346-5

    Article  Google Scholar 

  9. Maas R, Parsons J, Engheta N, Polman A (2013) Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat Photonics 7:907–912. https://doi.org/10.1038/nphoton.2013.256

  10. Wang Z, Sun K, **e P, Hou Q, Liu Y, Gu Q, Fan R (2019) Design and analysis of negative permittivity behaviors in barium titanate/nickel metacomposites. Acta Mater 185. https://doi.org/10.1016/j.actamat.2019.12.034

  11. Shi Z, Fan R, Yan K, Sun K, Zhang M, Wang C, Liu X, Zhang X (2013) Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv Funct Mater 23:4123–4132. https://doi.org/10.1002/adfm.201202895

    Article  CAS  Google Scholar 

  12. Shi Z, Fan R, Zhang Z, Yan K, Zhang X, Sun K, Liu X, Wang C (2013) Experimental realization of simultaneous negative permittivity and permeability in Ag/Y3 Fe5O12 random composites. J Mater Chem C 1:1633–1637. https://doi.org/10.1039/C2TC00479H

  13. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331:290–291. https://doi.org/10.1126/science.1198258

  14. Liu C-H, Behdad N (2013) High-power microwave filters and frequency selective surfaces exploiting electromagnetic wave tunneling through ϵ-negative layers. J Appl Phys 113:064909. https://doi.org/10.1063/1.4790584

  15. Lan D, Wang Y, Wang Y, Zhu X, Li H, Guo X, Ren J, Guo Z, Wu G (2023) Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J Colloid Interface Sci 651:494–503. https://doi.org/10.1016/j.jcis.2023.08.019

  16. Li F, Wu N, Kimura H, Wang Y, Xu BB, Wang D, Li Y, Algadi H, Guo Z, Du W, Hou C (2023) Initiating binary metal oxides microcubes electromagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nanomicro Lett 15:220. https://doi.org/10.1007/s40820-023-01197-0

  17. Fan G, Wang Z, Ren H, Liu Y, Fan R (2021) Dielectric dispersion of copper/rutile cermets: dielectric resonance, relaxation, and plasma oscillation. Scr Mater 190:1–6. https://doi.org/10.1016/j.scriptamat.2020.08.027

  18. Wang Z, Sun K, Wu H, Qu Y, Tian J, Ju L, Fan R (2022) Epsilon-near-zero response derived from collective oscillation in the metacomposites with ultralow plasma frequency. Compos Sci Technol 227:109600. https://doi.org/10.1016/j.compscitech.2022.109600

  19. Sun K, **n J, Wang Z, Feng S, Wang Z, Fan R, Liu H, Guo Z (2019) Weakly negative permittivity and low frequency dispersive behavior in graphene/epoxy metacomposites. J Mater Sci Mater 30:14745–14754. https://doi.org/10.1007/s10854-019-01846-4

  20. Guan Y, Li Y, Luo S, Ren X, Deng L, Sun L, Mi H, Zhang P, Liu J (2019) Rational design of positive-hexagon-shaped two-dimensional ZIF-derived materials as improved bifunctional oxygen electrocatalysts for use as long-lasting rechargeable Zn–air batteries. Appl Catal B 256:117871. https://doi.org/10.1016/j.apcatb.2019.117871

  21. Wu H, Yin R, Zhang Y, Wang Z, **e P, Qian L (2017) Synergistic effects of carbon nanotubes on negative dielectric properties of graphene-phenolic resin composites. J Phys Chem C 121:12037–12045. https://doi.org/10.1021/acs.jpcc.7b02858

  22. Rehman Su, Ahmed R, Ma K, Xu S, Tao T, Aslam MA, Amir M, Wang J (2021) Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng sci 13:71–78. https://doi.org/10.30919/es8d1263

  23. Rahaman SJ, Samanta A, Mir MH, Dutta B (2023) Metal-organic frameworks (MOFs): a promising candidate for stimuli-responsive drug delivery. ES Mater Manuf 19:792. https://doi.org/10.30919/esmm5f792

  24. Bag PP, Singh GP, Singha S, Roymahapatra G (2021) Synthesis of metal-organic frameworks (MOFs) and their biological, catalytic and energetic application: a mini review. Eng sci 13:1–10. https://doi.org/10.30919/es8d1166

  25. Wang C, Liu X, Yang T, Sridhar D, Algadi H, Bin Xu B, El-Bahy ZM, Li H, Ma Y, Li T, Guo Z (2023) An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants. Sep Purif Technol 320:124144. https://doi.org/10.1016/j.seppur.2023.124144

  26. Tian J, Fan R, Zhang Z, Li Y, Wu H, Yang P, **e P, Duan W, Lee C-S (2022) Flexible and biocompatible poly (vinyl alcohol)/multi-walled carbon nanotubes hydrogels with epsilon-near-zero properties. J Mater Sci Technol 131:91–99. https://doi.org/10.1016/j.jmst.2022.05.019

  27. Meng X, Li Y, AlMasoud N, Wang W, Alomar TS, Li J, Ye X, Algadi H, Seok I, Li H, Xu BB, Lu N, El-Bahy ZM, Guo Z (2023) Compatibilizing and toughening blends of recycled acrylonitrile-butadiene-styrene/recycled high impact polystyrene blends via styrene-butadiene-glycidyl methacrylate terpolymer. Polymer 272:125856. https://doi.org/10.1016/j.polymer.2023.125856

  28. Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L, Cheng B (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr Polym 309:120678. https://doi.org/10.1016/j.carbpol.2023.120678

  29. Yang S, Shi C, Qu K, Sun Z, Li H, Xu B, Huang Z, Guo Z (2023) Electrostatic self-assembly cellulose nanofibers/MXene/nickel chains for highly stable and efficient seawater evaporation and purification. Carbon Lett. https://doi.org/10.1007/s42823-023-00540-0

    Article  Google Scholar 

  30. Gao F, Liu Y, Jiao C, El-Bahy SM, Shao Q, El-Bahy ZM, Li H, Wasnik P, Algadi H, Xu BB, Wang N, Yuan Y, Guo Z (2023) Fluorine-phosphate copolymerization waterborne acrylic resin coating with enhanced anticorrosive performance. J Polym Sci 61:2677–2687. https://doi.org/10.1002/pol.20230108

  31. Chen S, Bai L, Wang X, Li H, Xu BB, Algadi H, Guo Z (2023) Effect of hydrophobic nano-silica/β-nucleating agent on the crystallization behavior and mechanical properties of polypropylene random copolymers. Polym Int n/a. https://doi.org/10.1002/pi.6575

  32. Li H, Wang Z, Wei Y, Wang N, Gao K, Liao X, Zhao H, Zhang L, Chen Z, Lin Q, Hu D, Ruso JM, Liu Z (2023) Self-assembly study of complex topological structure constructing fromtelechelic polymer systems. ES Mater Manuf 19:778. https://doi.org/10.30919/esmm5f778

  33. Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H (2018) Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chem Soc Rev 47:6267–6295. https://doi.org/10.1039/C8CS00268A

  34. Kang F, Jiang X, Wang Y, Ren J, Xu BB, Gao G, Huang Z, Guo Z (2023) Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline. Inorg Chem Front 10:6045–6057. https://doi.org/10.1039/D3QI01283B

  35. Ruan J, Chang Z, Rong H, Alomar TS, Zhu D, AlMasoud N, Liao Y, Zhao R, Zhao X, Li Y, Xu BB, Guo Z, El-Bahy ZM, Li H, Zhang X, Ge S (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213:118208. https://doi.org/10.1016/j.carbon.2023.118208

  36. Zou X, Huang X, Goswami A, Silva R, Sathe BR, Mikmeková E, Asefa T (2014) Cobalt‐embedded nitrogen‐rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew Chem Int Ed 126:4461–4465. https://doi.org/10.1002/ange.201311111

  37. Pei X, Chen Y, Li S, Zhang S, Feng X, Zhou J, Wang B (2016) Metal‐organic frameworks derived porous carbons: syntheses, porosity and gas sorption properties. Chin J Chem 34:157–174. https://doi.org/10.1002/cjoc.201500760

  38. Qian Y, Liu Z, Zhang H, Wu P, Cai C (2016) Active site structures in nitrogen-doped carbon-supported cobalt catalysts for the oxygen reduction reaction. ACS Appl Mater Interfaces 8:32875–32886. https://doi.org/10.1021/acsami.6b11927

  39. Fei H, Dong J, Arellano Jiménez MJ, Ye G, Dong Kim N, Samuel EL, Peng Z, Zhu Z, Qin F, Bao J (2015) Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 6:1–8. https://doi.org/10.1038/ncomms9668

  40. Jiang Y, Deng Y, Fu J, Lee DU, Liang R, Cano ZP, Liu Y, Bai Z, Hwang S, Yang L (2018) Interpenetrating triphase cobalt‐based nanocomposites as efficient bifunctional oxygen electrocatalysts for long‐lasting rechargeable Zn–air batteries. Adv Energy Mater 8:1702900. https://doi.org/10.1002/aenm.201702900

  41. Gong K, Du F, **a Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. science 323:760–764. https://doi.org/10.1126/science.116804

  42. Li Y, Gao J, Zhang F, Qian Q, Liu Y, Zhang G (2018) Hierarchical 3D macrosheets composed of interconnected in situ cobalt catalyzed nitrogen doped carbon nanotubes as superior bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. J Mater Chem A 6:15523–15529. https://doi.org/10.1039/C8TA06057F

  43. Sun K, Fan R, Yin Y, Guo J, Li X, Lei Y, An L, Cheng C, Guo Z (2017) Tunable negative permittivity with fano-like resonance and magnetic property in percolative silver/yittrium iron garnet nanocomposites. J Phys Chem C 121:7564–7571. https://doi.org/10.1021/acs.jpcc.7b02036

  44. Wu H, Sun H, Han F, **e P, Zhong Y, Quan B, Zhao Y, Liu C, Fan R, Guo Z (2021) Negative permittivity behavior in flexible carbon nanofibers-polydimethylsiloxane films. Eng sci 17:113–120. https://doi.org/10.30919/es8d576

  45. Wu H, Qi Y, Wang Z, Zhao W, Li X, Qian L (2017) Low percolation threshold in flexible graphene/acrylic polyurethane composites with tunable negative permittivity. Compos Sci Technol 151:79–84. https://doi.org/10.1016/j.compscitech.2017.08.011

  46. Wu H, Yin R, Qian L, Zhang Z (2017) Three-dimensional graphene network/phenolic resin composites towards tunable and weakly negative permittivity. Mater Des 117:18–23. https://doi.org/10.1016/j.matdes.2016.12.068

  47. Wu H, Huang X, Qian L (2018) Recent progress on the metacomposites with carbonaceous fillers. Eng Sci 2:17–25. https://doi.org/10.30919/es8d656

  48. Chui S, Hu L (2002) Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites. Phys Rev B Condens Matter 65:144407. https://doi.org/10.1103/PhysRevB.65.144407

  49. Tsutaoka T, Massango H, Kasagi T, Yamamoto S, Hatakeyama K (2016) Double negative electromagnetic properties of percolated Fe53Ni47/Cu granular composites. Appl Phys Lett 108:191904. https://doi.org/10.1063/1.4949560

  50. Chen M, Sun K, Wang X, Wang Y (2021) Communication—tunable negative permittivity of cobalt and epoxy composites at 3 kHz∼ 1 MHz frequency regions. ECS J Solid State Sci Technol 10:123007. https://doi.org/10.1149/2162-8777/ac3e45

  51. Sun K, **n J, Li Y, Wang Z, Hou Q, Li X, Wu X, Fan R, Choy KL (2019) Negative permittivity derived from inductive characteristic in the percolating Cu/EP metacomposites. J Mater Sci Technol 35:2463–2469. https://doi.org/10.1016/j.jmst.2019.07.015

  52. Sun K, Wang L, Wang Z, Wu X, Fan G, Wang Z, Cheng C, Fan R, Dong M, Guo Z (2020) Flexible silver nanowire/carbon fiber felt metacomposites with weakly negative permittivity behavior. Phys Chem Chem Phys 22:5114–5122. https://doi.org/10.1039/C9CP06196G

  53. Wang H, Deng C, Sun K, Qu Y, Fan R (2020) Communication—tunable epsilon-negative property in FeCrNi/CaCu3Ti4O12 metacomposites. ECS J Solid State Sci Technol 9:053003. https://doi.org/10.1149/2162-8777/ab9a5b

  54. Kaur A, Kumar R (2022) Formulation of biocompatible vancomycin conjugated gold nanoparticles for enhanced antibacterial efficacy. ES Energy Environ 15:34–44. https://doi.org/10.30919/esee8c547

  55. Wang C, Zhang Z, Xu X, Wu H, Liu D, Meng S, Li G, Wei Y, Li X, Wang G, **e P, Liu C (2023) Flexible and biocompatible polystyrene/multi-walled carbon nanotubes films with high permittivity and low loss. ES Mater Manuf 19:791. https://doi.org/10.30919/esmm5f791

Download references

Funding

This work was supported by the Natural Science Foundation of Shanghai (22ZR1426800), Young Elite Scientist Sponsorship Program by China Association for Science and Technology (YESS20200257), the Innovation Program of Shanghai Municipal Education Commission (2019–01-07–00-10-E00053), and the National Natural Science Foundation of China (52271182).

Author information

Authors and Affiliations

Authors

Contributions

Kai Sun and Juan Song, Zhengyi Mao, Gemeng Liang conceived the idea and supervised the project. Chong Wang, **nxue Tang and Zheng Zhang designed the experiments, data curation and writing-original draft preparation, formal analysis. Kehui Zheng, Ni Zeng and Runhua Fan discussed the methodology, conceptualization and reviewed and edited the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Kai Sun, Gemeng Liang, Zhengyi Mao or Juan Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Tang, X., Zhang, Z. et al. Weakly negative permittivity: metal–organic frameworks derived cobalt nanoparticles encapsulated by positive-hexagon-shaped carbon nanosheets. Adv Compos Hybrid Mater 7, 4 (2024). https://doi.org/10.1007/s42114-023-00800-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00800-7

Keywords

Navigation