Log in

In situ growth of bimetallic nickel cobalt sulfide (NiCo2S4) nanowire arrays encapsulated by nitrogen-doped carbon on carbon cloth as binder-free and flexible electrode for high-performance aqueous Zn batteries

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Recently, aqueous nickel-zinc (Ni-Zn) batteries have abundant application potential due to its large-scale energy storage systems. However, traditional cathode materials still have the disadvantage of having much lower specific capacity than their theoretical capacity and poor cycle performance. The development of bond-free flexible cathode electrodes for high-performance aqueous Zn batteries remains a tremendous challenge. Herein, a simple method was reported to in situ grow NiCo2S4 acicular nanowire arrays encapsulated by nitrogen-doped carbon on carbon cloth (denoted as CC@NC-NiCo2S4) as binder-free and flexible electrode for high-performance aqueous Zn batteries. When CC@NC-NiCo2S4 was used as a stand-alone cathode material, the prepared aqueous CC@NC-NiCo2S4//Zn battery exhibits excellent rate capability (0.58 mAh cm−2 at 2 mA cm−2 and 0.46 mAh cm−2 at 20 mA cm−2) and superior cycling performance (80% capacity retention at 4.65 A g−1 after 1000 cycles, based on the NiCo2S4 active material). More importantly, a quasi-solid-state CC@NC-NiCo2S4/Zn cell has also been fabricated and exhibits an outstanding energy density of 238 Wh kg−1 at a power density of 1.27 kW kg−1 and 89% capacitance retention for 500 cycles with 5 mA cm−2. Those results showed that it is much higher than that of other reported (Ni-Zn) batteries, indicating its excellent potential practical applications for high-performance aqueous Zn batteries.

Graphical Abstract

Novel electrode functionalized with NiCo2S4 nanowire arrays encapsulated by carbon was synthesized and exhibits excellent performance for aqueous Zn batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide cap** layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160. https://doi.org/10.1016/j.jmst.2022.03.012

    Article  Google Scholar 

  2. Chen A, Wang C, Abu Ali OA, Mahmoud SF, Shi Y, Ji Y, Algadi H, El-Bahy SM, Huang M, Guo Z, Cui D, Wei H (2022) MXene@nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications. Compos A: Appl Sci Manuf 163:107174. https://doi.org/10.1016/j.compositesa.2022.107174

  3. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11(5):19–30. https://doi.org/10.30919/es8d1128

  4. Fang G, Zhou J, Pan A, Liang S (2018) Recent advances in aqueous zinc-ion batteries. ACS Energy Letters 3(10):2480–2501. https://doi.org/10.1021/acsenergylett.8b01426

    Article  CAS  Google Scholar 

  5. Li C, Wang L, Zhang J, Zhang D, Du J, Yao Y, Hong G (2022) Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Stor Mater 44:104–135. https://doi.org/10.1016/j.ensm.2021.10.020

    Article  Google Scholar 

  6. Wu M, Zhang G, Yang H, Liu X, Dubois M, Gauthier MA, Sun S (2021) Aqueous Zn-based rechargeable batteries: recent progress and future perspectives. InfoMat 4(5):e12265. https://doi.org/10.1002/inf2.12265

  7. Yang D, Zhou Y, Geng H, Liu C, Lu B, Rui X, Yan Q (2020) Pathways towards high energy aqueous rechargeable batteries. Coord Chem Rev 424:213521. https://doi.org/10.1016/j.ccr.2020.213521

  8. Shi Y, Chen Y, Shi L, Wang K, Wang B, Li L, Ma Y, Li Y, Sun Z, Ali W, Ding S (2020) An overview and future perspectives of rechargeable zinc batteries. Small 16(23):2000730. https://doi.org/10.1002/smll.202000730

  9. Li H, Ma L, Han C, Wang Z, Liu Z, Tang Z, Zhi C (2019) Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62:550–587. https://doi.org/10.1016/j.nanoen.2019.05.059

    Article  CAS  Google Scholar 

  10. Xu JL, Sun Q, Chen HJ, Yan WJ, Lu P (2021) Hierarchical microstructure constructed with graphitic carbon-coated Ni3S2 nanoparticles anchored on N-doped mesoporous carbon nanoflakes for optimized sodium storage. Nanoscale 13(44):18734–18740. https://doi.org/10.1039/d1nr05539a

    Article  CAS  Google Scholar 

  11. **e Y, Fei B, Cai D, Chen Q, Cui Z, Wang Q, Zhan H (2020) Multicomponent hierarchical NiCo2O4@CoMoO4@Co3O4 arrayed structures for high areal energy density aqueous NiCo//Zn batteries. Energy Stor Mater 31:27–35. https://doi.org/10.1016/j.ensm.2020.05.024

    Article  Google Scholar 

  12. Gong J, Luo W, Zhao Y, **e M, Wang J, Yang J, Dai Y (2022) Co9S8/NiCo2S4 core-shell array structure cathode hybridized with PPy/MnO2 core-shell structure anode for high-performance flexible quasi-solid-state alkaline aqueous batteries. Chem Eng J 434:134640. https://doi.org/10.1016/j.cej.2022.134640

  13. Wu X, Yang Y, Zhang T, Wang B, Xu H, Yan X, Tang Y (2019) CeOx-decorated hierarchical NiCo2S4 hollow nanotubes arrays for enhanced oxygen evolution reaction electrocatalysis. ACS Appl Mater Interfaces 11(43):39841–39847. https://doi.org/10.1021/acsami.9b12221

    Article  CAS  Google Scholar 

  14. Song J, Xu K, Liu N, Reed D, Li X (2021) Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater Today 45:191–212. https://doi.org/10.1016/j.mattod.2020.12.003

    Article  CAS  Google Scholar 

  15. Dong S, Hu P, Li X, Hong C, Zhang X, Han J (2020) NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem Eng J 398:125588. https://doi.org/10.1016/j.cej.2020.125588

  16. Shang W, Yu W, Liu Y, Li R, Dai Y, Cheng C, Tan P, Ni M (2020) Rechargeable alkaline zinc batteries: progress and challenges. Energy Stor Mater 31:44–57. https://doi.org/10.1016/j.ensm.2020.05.028

    Article  Google Scholar 

  17. Han X, Zhang W, Ma X, Zhong C, Zhao N, Hu W, Deng Y (2019) Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv Mater 31(18):e1808281. https://doi.org/10.1002/adma.201808281

    Article  CAS  Google Scholar 

  18. Sha L, Ye K, Wang G, Shao J, Zhu K, Cheng K, Yan J, Wang G, Cao D (2019) Rational design of NiCo2S4 nanowire arrays on nickle foam as highly efficient and durable electrocatalysts toward urea electrooxidation. Chem Eng J 359:1652–1658. https://doi.org/10.1016/j.cej.2018.10.225

    Article  CAS  Google Scholar 

  19. Lee HS, Gund GS, Park HS (2020) Controlled growth and interaction of NiCo2S4 on conductive substrate for enhanced electrochemical performance. J Power Sources 451:227763. https://doi.org/10.1016/j.jpowsour.2020.227763

  20. Hao Z, He X, Li H, Trefilov D, Song Y, Li Y, Fu X, Cui Y, Tang S, Ge H, Chen Y (2020) Vertically aligned and ordered arrays of 2D MCo2S4@metal with ultrafast ion/electron transport for thickness-independent pseudocapacitive energy storage. ACS Nano 14(10):12719–12731. https://doi.org/10.1021/acsnano.0c02973

    Article  CAS  Google Scholar 

  21. Kang L, Zhang M, Zhang J, Liu S, Zhang N, Yao W, Ye Y, Luo C, Gong Z, Wang C, Zhou X, Wu X, Jun SC (2020) Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. J Mater Chem A 8(45):24053–24064. https://doi.org/10.1039/d0ta08979f

    Article  CAS  Google Scholar 

  22. Lu P, Jiang X, Guo W, Wang L, Zhang T, Boyjoo Y, Si W, Hou F, Liu J, Dou SX, Liang J (2021) A Ni–Co sulfide nanosheet/carbon nanotube hybrid film for high-energy and high-power flexible supercapacitors. Carbon 178:355–362. https://doi.org/10.1016/j.carbon.2021.02.103

    Article  CAS  Google Scholar 

  23. Wang Z, Nengzi L-C, Zhang X, Zhao Z, Cheng X (2020) Novel NiCo2S4/CS membranes as efficient catalysts for activating persulfate and its high activity for degradation of nimesulide. Chem Eng J 381:122517. https://doi.org/10.1016/j.cej.2019.122517

  24. Yu CF, Lin LY (2016) Effect of the bimetal ratio on the growth of nickel cobalt sulfide on the Ni foam for the battery-like electrode. J Colloid Interface Sci 482:1–7. https://doi.org/10.1016/j.jcis.2016.07.059

    Article  CAS  Google Scholar 

  25. Zhu Y, An S, Sun X, Lan D, Cui J, Zhang Y, He W (2020) Core-branched NiCo2S4@CoNi-LDH heterostructure as advanced electrode with superior energy storage performance. Chem Eng J 383:123206. https://doi.org/10.1016/j.cej.2019.123206

  26. Wan L, He C, Chen D, Liu J, Zhang Y, Du C, **e M, Chen J (2020) In situ grown NiFeP@NiCo2S4 nanosheet arrays on carbon cloth for asymmetric supercapacitors. Chem Eng J 399:125778. https://doi.org/10.1016/j.cej.2020.125778

  27. Liang X, He H, Yang X, Lü W, Wang L, Li X (2021) In-situ growth of bimetallic sulfide NiCo2S4 nanowire on carbon cloth for asymmetric flexible supercapacitors. J Energy Stor 42:103105. https://doi.org/10.1016/j.est.2021.103105

  28. Han C, Zhang T, Li J, Li B, Lin Z (2020) Enabling flexible solid-state Zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy 77:105165. https://doi.org/10.1016/j.nanoen.2020.105165

  29. Li Y, Liu H, Xu J, Liu Y, Wang M, Li J, Cui H (2018) Hierarchical nanostructure-tuned super-high electrochemical stability of nickel cobalt sulfide. J Mater Chem A 6(40):19788–19797. https://doi.org/10.1039/c8ta07624c

    Article  CAS  Google Scholar 

  30. Wu L Dong Y (2021) Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Stor Mater 41:715–737. https://doi.org/10.1016/j.ensm.2021.07.004

  31. Dang C, Mu Q, **e X, Sun X, Yang X, Zhang Y, Maganti S, Huang M, Jiang Q, Seok I, Du W, Hou C (2022) Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv Compos Hybrid Mater 5(2):606–626. https://doi.org/10.1007/s42114-022-00500-8

    Article  Google Scholar 

  32. Jiang X, Chen Y, Meng X, Cao W, Liu C, Huang Q, Naik N, Murugadoss V, Huang M, Guo Z (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191:448–470. https://doi.org/10.1016/j.carbon.2022.02.011

    Article  CAS  Google Scholar 

  33. Zhao J, Wei D, Zhang C, Shao Q, Murugadoss V, Guo Z, Jiang Q, Yang X (2021) An overview of oxygen reduction electrocatalysts for rechargeable zinc-air batteries enabled by carbon and carbon composites. Eng Sci 15:1–19. https://doi.org/10.30919/es8d420

  34. Wang R, Meng Z, Yan X, Tian T, Lei M, Pashameah RA, Abo-Dief HM, Algadi H, Huang N, Guo Z, Tang H (2023) Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries. J Mater Sci Technol 137:215–222. https://doi.org/10.1016/j.jmst.2022.07.041

    Article  Google Scholar 

  35. Hou C, Yang W, Kimura H, **e X, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Xu BB, Sridhar D, Algadi H, Guo Z, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195. https://doi.org/10.1016/j.jmst.2022.10.007

    Article  Google Scholar 

  36. Huangfu C, Liu Z, Lu X, Liu Q, Wei T, Fan Z (2021) Strong oxidation induced quinone-rich dopamine polymerization onto porous carbons as ultrahigh-capacity organic cathode for sodium-ion batteries. Energy Stor Mater 43:120–129. https://doi.org/10.1016/j.ensm.2021.08.043

    Article  Google Scholar 

  37. Shi H, Xue L, Gao A, Fu Y, Zhou Q, Zhu L (2016) Fouling-resistant and adhesion-resistant surface modification of dual layer PVDF hollow fiber membrane by dopamine and quaternary polyethyleneimine. J Membr Sci 498:39–47. https://doi.org/10.1016/j.memsci.2015.09.065

    Article  CAS  Google Scholar 

  38. Ma F-F, Zhang D, Zhang N, Huang T, Wang Y (2018) Polydopamine-assisted deposition of polypyrrole on electrospun poly(vinylidene fluoride) nanofibers for bidirectional removal of cation and anion dyes. Chem Eng J 354:432–444. https://doi.org/10.1016/j.cej.2018.08.048

    Article  CAS  Google Scholar 

  39. Yuan D, Huang G, Yin D, Wang X, Wang C, Wang L (2017) Metal-organic framework template synthesis of NiCo2S4@C encapsulated in hollow nitrogen-doped carbon cubes with enhanced electrochemical performance for lithium storage. ACS Appl Mater Interfaces 9(21):18178–18186. https://doi.org/10.1021/acsami.7b02176

    Article  CAS  Google Scholar 

  40. Liu X, Wu Z, Yin Y (2017) Hierarchical NiCo2S4@PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors. Chem Eng J 323:330–339. https://doi.org/10.1016/j.cej.2017.04.115

    Article  CAS  Google Scholar 

  41. Yan M, Yao Y, Wen J, Long L, Kong M, Zhang G, Liao X, Yin G, Huang Z (2016) Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor. ACS Appl Mater Interfaces 8(37):24525–24535. https://doi.org/10.1021/acsami.6b05618

    Article  CAS  Google Scholar 

  42. Li N, Hou Z, Liang S, Cao Y, Liu H, Hua W, Wei C, Kang F, Wang J-G (2023) Highly flexible MnO2@polyaniline core-shell nanowire film toward substantially expedited zinc energy storage. Chem Eng J 452:139408. https://doi.org/10.1016/j.cej.2022.139408

  43. Cui Z, Shen S, Yu J, Si J, Cai D, Wang Q (2021) Electrospun carbon nanofibers functionalized with NiCo2S4 nanoparticles as lightweight, flexible and binder-free cathode for aqueous Ni-Zn batteries. Chem Eng J 426:130068. https://doi.org/10.1016/j.cej.2021.130068

  44. Li F, Li Q, Kimura H, **e X, Zhang X, Wu N, Sun X, Xu BB, Algadi H, Pashameah RA, Alanazi AK, Alzahrani E, Li H, Du W, Guo Z, Hou C (2022) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259. https://doi.org/10.1016/j.jmst.2022.12.003

    Article  Google Scholar 

  45. Yan Z, Li J, Chen Q, Chen S, Luo L, Chen Y (2022) Synthesis of CoSe2/Mxene composites using as high-performance anode materials for lithium-ion batteries. Adv Compos Hybrid Mater 5(4):2977–2987. https://doi.org/10.1007/s42114-022-00524-0

    Article  CAS  Google Scholar 

  46. Zhai Y, Yang W, **e X, Sun X, Wang J, Yang X, Naik N, Kimura H, Du W, Guo Z, Hou C (2022) Co3O4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithium–oxygen batteries. Inorg Chem Front 9(6):1115–1124. https://doi.org/10.1039/d1qi01260f

    Article  CAS  Google Scholar 

  47. Wu M, Zhang G, Tong H, Liu X, Du L, Chen N, Wang J, Sun T, Regier T, Sun S (2021) Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano Energy 79:105409. https://doi.org/10.1016/j.nanoen.2020.105409

  48. Yang W, Peng D, Kimura H, Zhang X, Sun X, Pashameah RA, Alzahrani E, Wang B, Guo Z, Du W, Hou C (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5(4):3146–3157. https://doi.org/10.1007/s42114-022-00556-6

    Article  CAS  Google Scholar 

  49. Tian Y, Xu L, Li M, Yuan D, Liu X, Qian J, Dou Y, Qiu J, Zhang S (2020) Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn-air batteries. Nanomicro Lett 13:1–15. https://doi.org/10.1007/s40820-020-00526-x

    Article  CAS  Google Scholar 

  50. Zhang D, Wang S, Hu R, Gu J, Cui Y, Li B, Chen W, Liu C, Shang J, Yang S (2020) Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium–sulfur batteries. Adv Funct Mater 30(30):2002471. https://doi.org/10.1002/adfm.202002471

    Article  CAS  Google Scholar 

  51. Yi M, Wu A, Chen Q, Cai D, Zhan H (2018) In situ confined conductive nickel cobalt sulfoselenide with tailored composition in graphitic carbon hollow structure for energy storage. Chem Eng J 351:678–687. https://doi.org/10.1016/j.cej.2018.06.047

    Article  CAS  Google Scholar 

  52. Yu J, Cai D, Si J, Zhan H, Wang Q (2022) MOF-derived NiCo2S4 and carbon hybrid hollow spheres compactly concatenated by electrospun carbon nanofibers as self-standing electrodes for aqueous alkaline Zn batteries. J Mater Chem A 10(8):4100–4109. https://doi.org/10.1039/d1ta10597c

    Article  CAS  Google Scholar 

  53. Dong F, Wu M, Zhang G, Liu X, Rawach D, Tavares AC, Sun S (2020) Defect engineering of carbon-based electrocatalysts for rechargeable zinc-air batteries. Chem Asian J 15(22):3737–3751. https://doi.org/10.1002/asia.202001031

    Article  CAS  Google Scholar 

  54. Dong F, Wu M, Chen Z, Liu X, Zhang G, Qiao J, Sun S (2021) Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nanomicro Lett 14(1):36. https://doi.org/10.1007/s40820-021-00768-3

    Article  CAS  Google Scholar 

  55. Song K, Liu C, Mi L, Chou S, Chen W, Shen C (2021) Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 17(9):1903194. https://doi.org/10.1002/smll.201903194

  56. Wang Y, Hong X, Guo Y, Zhao Y, Liao X, Liu X, Li Q, He L, Mai L (2020) Wearable textile-based Co-Zn alkaline microbattery with high energy density and excellent reliability. Small 16(16):2000293. https://doi.org/10.1002/smll.202000293

  57. Shi W, Mao J, Xu X, Liu W, Zhang L, Cao X, Lu X (2019) An ultra-dense NiS2/reduced graphene oxide composite cathode for high-volumetric/gravimetric energy density nickel–zinc batteries. J Mater Chem A 7(26):15654–15661. https://doi.org/10.1039/c9ta04900b

    Article  CAS  Google Scholar 

  58. Chen L, Yang Z, Qin H, Zeng X, Meng J, Chen H (2019) Graphene-wrapped hollow ZnMn2O4 microspheres for high-performance cathode materials of aqueous zinc ion batteries. Electrochimica Acta 317:155–163. https://doi.org/10.1016/j.electacta.2019.05.147

    Article  CAS  Google Scholar 

  59. Xuan X, Qian M, Pan L, Lu T, Gao Y, Han L, Wan L, Niu Y, Gong S (2022) A hollow tubular NiCo layacknered double hydroxide@Ag nanowire structure for high-power-density flexible aqueous Ni//Zn battery. J Energy Chem 70:593–603. https://doi.org/10.1016/j.jechem.2021.12.013

    Article  CAS  Google Scholar 

  60. Wang K, Zhang X, Han J, Zhang X, Sun X, Li C, Liu W, Li Q, Ma Y (2018) High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl Mater Interfaces 10(29):24573–24582. https://doi.org/10.1021/acsami.8b07756

    Article  CAS  Google Scholar 

  61. Lai C, Wang Y, Fu L, Song H, Liu B, Pan D, Guo Z, Seok I, Li K, Zhang H, Dong M (2021) Aqueous flexible all-solid-state NiCo-Zn batteries with high capacity based on advanced ion-buffering reservoirs of NiCo2O4. Adv Compos Hybrid Mater 5(1):536–546. https://doi.org/10.1007/s42114-021-00375-1

    Article  CAS  Google Scholar 

  62. Guo S, Wang Y, Chen L, Pan D, Guo Z, **a S (2021) Porous TiO2–FeTiO3@carbon nanocomposites as anode for high-performance lithium-ion batteries. J Alloys Compd 858:157635. https://doi.org/10.1016/j.jallcom.2020.157635

  63. Liang M, Zhao M, Wang H, Shen J, Song X (2018) Enhanced cycling stability of hierarchical NiCo2S4@Ni(OH)2@PPy core–shell nanotube arrays for aqueous asymmetric supercapacitors. J Mater Chem A 6:2482–2493. https://doi.org/10.1039/c7ta10413h

    Article  CAS  Google Scholar 

  64. Dong G-H, Guo F-L, Sun Z, Li Y-Q, Song S-F, Xu C-H, Huang P, Yan C, Hu N, Fu S-Y (2022) Short carbon fiber reinforced epoxy-ionic liquid electrolyte enabled structural battery via vacuum bagging process. Adv Compos Hybrid Mater 5(3):1799–1811. https://doi.org/10.1007/s42114-022-00436-z

    Article  CAS  Google Scholar 

  65. Dong X, Zhao X, Chen Y, Wang C (2021) Investigations about the influence of different carbon matrixes on the electrochemical performance of Na3V2(PO4)3 cathode material for sodium ion batteries. Adv Compos Hybrid Mater 4(4):1070–1081. https://doi.org/10.1007/s42114-021-00319-9

    Article  CAS  Google Scholar 

  66. Liu Y, Lu YX, Xu YS, Meng QS, Gao JC, Sun YG, Hu YS, Chang BB, Liu CT, Cao AM (2020) Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv Mater 32(17):2000505. https://doi.org/10.1002/adma.202000505

  67. Yang K, Zhang X, Song K, Zhang J, Liu C, Mi L, Wang Y, Chen W (2020) Se–C bond and reversible SEI in facile synthesized SnSe2⊂3D carbon induced stable anode for sodium-ion batteries. Electrochimica Acta 337:135783. https://doi.org/10.1016/j.electacta.2020.135783

  68. Shang W, Yu W, Tan P, Chen B, Xu H, Ni M (2019) A high-performance Zn battery based on self-assembled nanostructured NiCo2O4 electrode. J Power Sources 421:6–13.https://doi.org/10.1016/j.jpowsour.2019.02.097

  69. Huang Y, Li M, Chen S, Sun P, Lv X, Li B, Fang L, Sun X (2021) Constructing aqueous Zn//Ni hybrid battery with NiSe nanorod array on nickel foam and redox electrolytes for high-performance electrochemical energy storage. Appl Surf Sci 562:150222. https://doi.org/10.1016/j.apsusc.2021.150222

  70. Hou C, Yang W, **e X, Sun X, Wang J, Naik N, Pan D, Mai X, Guo Z, Dang F, Du W (2021) Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J Colloid Interface Sci 596:396–407. https://doi.org/10.1016/j.jcis.2021.03.149

    Article  CAS  Google Scholar 

  71. Mu Q, Liu R, Kimura H, Li J, Jiang H, Zhang X, Yu Z, Sun X, Algadi H, Guo Z, Du W, Hou C (2022) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv Compos Hybrid Mater 6(2):75. https://doi.org/10.1007/s42114-022-00607-y

Download references

Funding

The authors would like to acknowledge the financial support of the Industry-University Cooperation of Fujian Province (Grant No. 2020H6019), the Natural Science Foundation of Fujian Province (Grant No. 2022J01942), the National Innovation Demonstration Zones and Collaborative Innovation Platform Project for Fuzhou-**amen-Quanzhou (Grant No. 2021FX05), the opening foundation of Key Laboratory of Fujian Provincial Engineering Research Center of Die & Mold (Fujian University of Technology) (Grant No. KF-C21006), and the Program for Innovative Research Team in Science and Technology in Fujian Province University (IRTSTFJ).

Author information

Authors and Affiliations

Authors

Contributions

Zhixiang Cui: conceptualization; supervision; writing—reviewing and editing. Jixiang Zhou: investigation; methodology; writing—original draft. **aolong Wang: part of experimental investigation. Qianting Wang: software, data curation, validation. Junhui Si: conceptualization, supervision, project administration, funding acquisition. **aolong Liu: writing—reviewing and editing; supervision; funding acquisition.

Corresponding authors

Correspondence to Junhui Si or **aolong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhixiang Cui and Jixiang Zhou contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12375 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Zhou, J., Wang, X. et al. In situ growth of bimetallic nickel cobalt sulfide (NiCo2S4) nanowire arrays encapsulated by nitrogen-doped carbon on carbon cloth as binder-free and flexible electrode for high-performance aqueous Zn batteries. Adv Compos Hybrid Mater 6, 95 (2023). https://doi.org/10.1007/s42114-023-00668-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00668-7

Keywords

Navigation