Log in

Fabrication processes of metal-fiber reinforced polymer hybrid components: a review

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Fascinating advantages (e.g., lightweight and superior performances combined with ductility and strength) of metal-FRP (fiber reinforced polymer) hybrid components attract increasing attentions of engineers and scientists from aviation and automotive industries. Forming and joining are currently two main technical approaches to fabricate metal-FRP hybrid components. However, it is challenging to fabricate metal-FRP hybrid components due to the fact that the physicochemical properties of metal and FRP are quite different. This work aims to comprehensively review existing fabrication processes of metal-FRP hybrid components and involved surface treatment methods in literature, where potential applications and key issues of each process are also pointed out. Joining processes, including adhesive bonding, riveting, and welding, are widely used to join pre-formed metal and FRP parts, and are of high precision and consistency. Nevertheless, due to the fact that joining processes are accompanied by high cost, long cycle time and potential damages to FRP in riveting and welding etc., forming processes (classified into forming of metal-FRP hybrid laminates, co-curing forming of metal and FRP prepreg sheets, forming prepreg to metal part followed by co-curing) have been increasingly developed to fabricate metal-FRP hybrid components with high efficiency and flexibility. Metal-FRP interfacial bonding plays a critical role in the mechanical performance of metal-FRP hybrid components fabricated by nearly all processes (except riveting), since interfacial debonding between metal and FRP breaks their stress transferring path and dissolves the reinforcement of FRP to metal. Therefore, surface treatments are generally applied to enhancing interfacial bonding between metal and FRP. In comparison with mechanical and chemical surface treatment methods, energy methods (e.g., laser) are of wider application, higher effectiveness, and more friendly to environment. This review provides a reference for the fabrication of metal-FRP hybrid components.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Tekkaya AE, Min J (2020) Special issue on automotive lightweight. Automot Innov 3(3):193–194. https://doi.org/10.1007/s42154-020-00117-x

    Article  Google Scholar 

  2. Lee JM, Min BJ, Park JH et al (2019) Design of lightweight CFRP automotive part as an alternative for steel part by thickness and lay-up optimization. Materials 12(14):2309. https://doi.org/10.3390/ma12142309

    Article  CAS  Google Scholar 

  3. Kavitha K, Vijayan R, Sathishkumar T (2020) Fiber-metal laminates: a review of reinforcement and formability characteristics. Mater Today: Proc 22:601–605. https://doi.org/10.1016/j.matpr.2019.08.232

  4. Lin Y, Min J, Teng H et al (2020) Flexural performance of steel–FRP composites for automotive Applications. Automot Innov 3(3):280–295. https://doi.org/10.1007/s42154-020-00109-x

    Article  Google Scholar 

  5. Vlot A, Gunnink JW (2001) Fiber metal laminates: an introduction. The Netherlands, Dordrecht

    Book  Google Scholar 

  6. Sinmazçelik T, Avcu E, Bora MÖ et al (2011) A review: fiber metal laminates, background, bonding types and applied test methods. Mater Des 32(7):3671–3685. https://doi.org/10.1016/j.matdes.2011.03.011

    Article  CAS  Google Scholar 

  7. Alderliesten R (2009) On the development of hybrid material concepts for aircraft structures. Recent Patents Eng 3(1):25–38. https://doi.org/10.2174/187221209787259893

    Article  CAS  Google Scholar 

  8. Khan SU, Alderliesten RC, Benedictus R (2009) Post-stretching induced stress redistribution in fiber metal laminates for increased fatigue crack growth resistance. Compos Sci Technol 69(3–4):396–405. https://doi.org/10.1016/j.compscitech.2008.11.006

    Article  CAS  Google Scholar 

  9. Wu G, Yang JM (2005) The mechanical behavior of GLARE laminates for aircraft structures. JOM 57:72–79. https://doi.org/10.1007/s11837-005-0067-4

    Article  Google Scholar 

  10. Li H, Hu Y, Liu C et al (2016) The effect of thermal fatigue on the mechanical properties of the novel fiber metal laminates based on aluminum–lithium alloy. Compos Part A 84:36–42. https://doi.org/10.1016/j.compositesa.2016.01.004

    Article  CAS  Google Scholar 

  11. Wanhill R J H (2016) GLARE®: a versatile fiber metal laminate (FML) concept. Singapore, pp 291–307

  12. Patil NA, Mulik SS, Wangikar KS et al (2018) Characterization of glass laminate aluminium reinforced epoxy-a review. Procedia Manuf 20:554–562. https://doi.org/10.1016/j.promfg.2018.02.083

    Article  Google Scholar 

  13. Hovik SP (2019) Experimental and numerical methods for characterization of impact damage in titanium-graphite laminates. Dissertation, University of Washington

  14. Chen Y, Wang Y, Wang H (2020) Research progress on interlaminar failure behavior of fiber metal laminates. Adv Polym Technol 2020:1–20. https://doi.org/10.1155/2020/3097839

    Article  CAS  Google Scholar 

  15. BMWBLOG (2015) BMW 7 Series’ Carbon Core more important that you might think. https://www.bmwblog.com/2015/09/01/bmw-7-series-carbon-core-more-important-that-you-might-think/. Accessed 15 Dec 2020

  16. Drössler R, Waffler R, Krahl M et al (2018) Tool technology for lightweight structures in 3-D hybrid designs. Lightweight Des Worldw 11(5):42–47. https://doi.org/10.1007/s41777-018-0040-x

    Article  Google Scholar 

  17. Lee M, Seo H, Kang C (2017) Comparison of collision test results for center-pillar reinforcements with TWB and CR420/CFRP hybrid composite materials using experimental and theoretical methods. Compos Struct 168:698–709. https://doi.org/10.1016/j.compstruct.2017.02.068

    Article  Google Scholar 

  18. Böttcher A, Opdemom H (2019) Series-production adhesive process for hybrid components. Lightweight Des Worldw 12(6):48–53. https://doi.org/10.1007/s41777-019-0058-8

    Article  Google Scholar 

  19. Zhu G, Sun G, Liu Q et al (2017) On crushing characteristics of different configurations of metal-composites hybrid tubes. Compos Struct 175:58–69. https://doi.org/10.1016/j.compstruct.2017.04.072

    Article  Google Scholar 

  20. Kim HS, Kim JW, Kim JK et al (2004) Design and manufacture of an automotive hybrid aluminum/composite drive shaft. Compos Struct 63(1):87–99. https://doi.org/10.1016/S0263-8223(03)00136-3

    Article  Google Scholar 

  21. Zheng C, Lei S (2009) Mechanical analysis and optimal design for carbon fiber resin composite wound hydrogen storage vessel with aluminum alloy liner. J Pressure Vessel Technol 131(2):021204. https://doi.org/10.1115/1.3027459

    Article  CAS  Google Scholar 

  22. New Carbon Prepreg Patch Technology Selected as Finalist in JEC Innovation Awards 2019 (2019) https://netcomposites.com/news/hexcels-new-carbon-prepreg-patch-technology-selected-as-finalist-in-jec-innovation-awards-2019/. Accessed 23 Dec 2020

  23. Automotive Weight Reduction Expo 2014 Part 2 (2014) https://www.marklines.com/cn/report_all/rep1261_201402. Accessed 27 Apr 2021

  24. Stötzner N (2019) Scalable, Single-stage Manufacturing of Hybrid Components. Lightweight Des Worldw 12:56–59. https://doi.org/10.1007/s41777-018-0067-z

    Article  Google Scholar 

  25. Catera PG, Mundo D, Treviso A et al (2019) On the design and simulation of hybrid metal-composite gears. Appl Compos Mater 26(3):817–833. https://doi.org/10.1007/s10443-018-9753-6

    Article  CAS  Google Scholar 

  26. Yao SS, ** FL, Rhee KY et al (2018) Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Compos Part B 142:241–250. https://doi.org/10.1016/j.compositesb.2017.12.007

    Article  CAS  Google Scholar 

  27. Neugebauer R, Kräusel V, Graf A (2014) Process chains for fiber metal laminates. Adv Mater Research 1018:285–292. https://doi.org/10.4028/www.scientific.net/AMR.1018.285

    Article  Google Scholar 

  28. Pramanik A, Basak AK, Dong Y et al (2017) Joining of carbon fiber reinforced polymer (CFRP) composites and aluminium alloys–A review. Compos Part A 101:1–29. https://doi.org/10.1016/j.compositesa.2017.06.007

    Article  CAS  Google Scholar 

  29. Xu H (2017) Study on tensile deformation behavior of steel/CFRP composites (in Chinese). Dissertation, Jiangsu University

  30. Liu J, Zhang J, Yue G et al (2019) Research on forming technology of fiber metal laminate curved parts. Aeronautical Manuf Technol 62(16):46–52. (in Chinese) https://doi.org/10.16080/j.issn1671-833x.2019.16.046

  31. Behrens BA, Hübner S, Grbic N et al (2017) Forming and joining of carbon-fiber-reinforced thermoplastics and sheet metal in one step. Procedia Eng 183:227–232. https://doi.org/10.1016/j.proeng.2017.04.026

    Article  CAS  Google Scholar 

  32. Guo Y, Zhai C, Li F et al (2019) Formability, defects and strengthening effect of steel/CFRP structures fabricated by using the differential temperature forming process. Compos Struct 216:32–38. https://doi.org/10.1016/j.compstruct.2019.01.106

    Article  Google Scholar 

  33. Zhou M, **ong X, Drummer D et al (2019) Interfacial interaction and joining property of direct injection-molded polymer-metal hybrid structures: a molecular dynamics simulation study. Appl Surf Sci 478:680–689. https://doi.org/10.1016/j.apsusc.2019.01.286

    Article  CAS  Google Scholar 

  34. Ho YC, Yanagimoto J (2017) Effect of unidirectional prepreg size on punching of pseudo-ductile CFRP laminates and CFRP/metal hybrid composites. Compos Struct 186:246–255. https://doi.org/10.1016/j.compstruct.2017.11.042

    Article  Google Scholar 

  35. Dos Santos DG, Carbas RJC, Marques EAS et al (2019) Reinforcement of CFRP joints with fibre metal laminates and additional adhesive layers. Compos Part B 165:386–396. https://doi.org/10.1016/j.compositesb.2019.01.096

    Article  CAS  Google Scholar 

  36. Ni J, Min J, Wan H et al (2020) Effect of adhesive type on mechanical properties of galvanized steel/SMC adhesive-bonded joints. Int J Adhes Adhes 97:102482. https://doi.org/10.1016/j.ijadhadh.2019.102482

    Article  CAS  Google Scholar 

  37. Tiu BDB, Delparastan P, Ney MR et al (2019) Enhanced adhesion and cohesion of bioinspired dry/wet pressure-sensitive adhesives. ACS Appl Mater Interfaces 11(31):28296–28306. https://doi.org/10.1021/acsami.9b08429

    Article  CAS  Google Scholar 

  38. Lee SH, Song HW, Kang BS et al (2019) Remora-inspired reversible adhesive for underwater applications. ACS Appl Mater Interfaces 11(50):47571–47576. https://doi.org/10.1021/acsami.9b16350

    Article  CAS  Google Scholar 

  39. Skopic BH, Schniepp HC (2020) Peeling in biological and bioinspired adhesive systems. JOM 72(4):1509–1522. https://doi.org/10.1007/s11837-020-04037-3

    Article  Google Scholar 

  40. Povolo M, Tabucol J, Brugo TM et al (2020) Electrical resistance curing method for hybrid metal-CFRP tubes. Appl Compos Mater 27(4):375–389. https://doi.org/10.1007/s10443-020-09818-2

    Article  CAS  Google Scholar 

  41. Zhou X, Zhao Y, Chen X et al (2021) Fabrication and mechanical properties of novel CFRP/Mg alloy hybrid laminates with enhanced interface adhesion. Mater Des 197:109251. https://doi.org/10.1016/j.matdes.2020.109251

    Article  CAS  Google Scholar 

  42. Streitferdt A, Rudolph N, Taha I (2017) Co-curing of CFRP-steel hybrid joints using the vacuum assisted resin infusion process. Appl Compos Mater 24(5):1137–1149. https://doi.org/10.1007/s10443-016-9575-3

    Article  CAS  Google Scholar 

  43. Heshmati M, Haghani R, Al-Emrani M (2017) Durability of bonded FRP-to-steel joints: Effects of moisture, de-icing salt solution, temperature and FRP type. Compos Part B 119:153–167. https://doi.org/10.1016/j.compositesb.2017.03.049

    Article  CAS  Google Scholar 

  44. Zhang Y, Lin J, Zheng R et al (2018) Investigation of strength degradation of adhesive-bonded aluminum joints exposed to corrosive environment using electrochemical methods. J Adhes Sci Technol 32(6):642–655. https://doi.org/10.1080/01694243.2017.1374671

    Article  CAS  Google Scholar 

  45. Zhang Z, Kovacevic R (2019) Laser cladding of iron-based erosion resistant metal matrix composites. J Manuf Process 38:63–75. https://doi.org/10.1016/j.jmapro.2019.01.001

    Article  Google Scholar 

  46. Guo L, Liu J, **a H et al (2021) Effects of surface treatment and adhesive thickness on the shear strength of precision bonded joints. Polym Test 94:107063. https://doi.org/10.1016/j.polymertesting.2021.107063

    Article  CAS  Google Scholar 

  47. Wan H, Min J, Lin J et al (2021) Effect of laser spot overlap ratio on surface characteristics and adhesive bonding strength of an Al alloy processed by nanosecond pulsed laser. J Manuf Process 62:555–565. https://doi.org/10.1016/j.jmapro.2020.12.055

    Article  Google Scholar 

  48. Kim C, Kim SH, Cha JH et al (2019) Cr diffusion coating to improve the corrosion resistance of an ODS steel in super-critical carbon dioxide environment. Surf Coat Technol 374:666–673. https://doi.org/10.1016/j.surfcoat.2019.06.055

    Article  CAS  Google Scholar 

  49. Zhang J, Yang S (2015) Self-piercing riveting of aluminum alloy and thermoplastic composites. J Compos Mater 49(12):1493–1502. https://doi.org/10.1177/0021998314535456

    Article  Google Scholar 

  50. Hirsch F, Müller S, Machens M et al (2016) Simulation of self-piercing rivetting processes in fibre reinforced polymers: Material modelling and parameter identification. J Mater Process Technol 241:164–177. https://doi.org/10.1016/j.jmatprotec.2016.10.010

    Article  Google Scholar 

  51. Zhang X, He X, **ng B et al (2020) Pre-holed self-piercing riveting of carbon fibre reinforced polymer laminates and commercially pure titanium sheets. J Mater Process Technol 279:116550. https://doi.org/10.1016/j.jmatprotec.2019.116550

    Article  CAS  Google Scholar 

  52. Wang J, Zhang G, Zheng X et al (2021) A self-piercing riveting method for joining of continuous carbon fiber reinforced composite and aluminum alloy sheets. Compos Struct 259:113219. https://doi.org/10.1016/j.compstruct.2020.113219

    Article  Google Scholar 

  53. Liu X, Lim YC, Li Y et al (2016) Effects of process parameters on friction self-piercing riveting of dissimilar materials. J Mater Process Technol 237:19–30. https://doi.org/10.1016/j.jmatprotec.2016.05.022

    Article  CAS  Google Scholar 

  54. Cui J, Dong D, Zhang X et al (2018) Influence of thickness of composite layers on failure behaviors of carbon fiber reinforced plastics/aluminum alloy electromagnetic riveted lap joints under high-speed loading. Int J Impact Eng 115:1–9. https://doi.org/10.1016/j.ijimpeng.2018.01.004

    Article  Google Scholar 

  55. Cao Z, Cardew-Hall M (2006) Interference-fit riveting technique in fiber composite laminates. Aerosp Sci Technol 10(4):327–330. https://doi.org/10.1016/j.ast.2005.11.003

    Article  Google Scholar 

  56. Jiang H, Luo T, Li G et al (2017) Fatigue life assessment of electromagnetic riveted carbon fiber reinforce plastic/aluminum alloy lap joints using Weibull distribution. Int J Fatigue 105:180–189. https://doi.org/10.1016/j.ijfatigue.2017.08.026

    Article  CAS  Google Scholar 

  57. Liu S, Zhang W, Wu Y et al (2013) The damage investigation of wedge-shaped electromagnetic riveting structure of CFRP/aluminium alloy. J Test Eval 41(2):188–193. https://doi.org/10.1520/JTE20120179

    Article  CAS  Google Scholar 

  58. Nagel P, Meschut G (2017) Flow drill screwing of fiber-reinforced plastic-metal composites without a pilot hole. Weld World 61(5):1057–1067. https://doi.org/10.1007/s40194-017-0493-2

    Article  CAS  Google Scholar 

  59. Wang PC, Stevenson R (2006) Friction stir rivet and method of joining therewith. U.S. Patent Application 10/997:473

  60. Min J, Li J, Li Y et al (2016) Affected zones in an aluminum alloy frictionally penetrated by a blind rivet. J Manuf Sci Eng 138(5):054501. https://doi.org/10.1115/1.4031635

    Article  Google Scholar 

  61. Skovron JD, Rohan Prasad R, Ulutan D et al (2015) Effect of thermal assistance on the joint quality of Al6063-T5A during flow drill screwdriving. J Manuf Sci Eng 137(5):051019. https://doi.org/10.1115/1.4031242

    Article  Google Scholar 

  62. Min J, Li Y, Li J et al (2015) Friction stir blind riveting of carbon fiber-reinforced polymer composite and aluminum alloy sheets. Int J Adv Manuf Technol 76:1403–1410. https://doi.org/10.1007/s00170-014-6364-8

    Article  Google Scholar 

  63. Khan HA, Wang WM, Wang K et al (2019) Investigation of mechanical behavior of dissimilar material FSBR joints exposed to a marine environment. J Manuf Process 37:376–385. https://doi.org/10.1016/j.jmapro.2018.12.011

    Article  Google Scholar 

  64. Li S, Khan HA, Hihara LH et al (2018) Corrosion behavior of friction stir blind riveted Al/CFRP and Mg/CFRP joints exposed to a marine environment. Corros Sci 132:300–309. https://doi.org/10.1016/j.corsci.2018.01.005

    Article  CAS  Google Scholar 

  65. Min J, Li Y, Carlson BE et al (2015) A new single-sided blind riveting method for joining dissimilar materials. CIRP Ann 64(1):13–16. https://doi.org/10.1016/j.cirp.2015.04.047

    Article  Google Scholar 

  66. Min J, Yang Q, Zhang K et al (2019) Numerical simulation of the frictional penetration process in friction stir blind riveting. Proceedings of NUMIFORM 2019: The 13th International Conference on Numerical Methods in Industrial Forming Processes pp 695–698

  67. Podlesak F, Hälsig A, Höfer K et al (2015) Spin-blind-riveting: secure joining of plastic with metal. Weld World 59(6):927–932. https://doi.org/10.1007/s40194-015-0255-y

    Article  Google Scholar 

  68. Reisgen U, Schiebahn A, Lotte J et al (2020) Innovative joining technology for the production of hybrid components from FRP and metals. J Mater Process Technol 282:116674. https://doi.org/10.1016/j.jmatprotec.2020.116674

    Article  Google Scholar 

  69. Wang S, Min J, Lin J et al (2019) Flow drill riveting of carbon fiber-reinforced polymer and aluminum alloy sheets. Weld World 63(4):1013–1024. https://doi.org/10.1007/s40194-019-00741-0

    Article  CAS  Google Scholar 

  70. Nagatsuka K, **ao B, Wu L et al (2018) Dissimilar materials joining of metal/carbon fiber reinforced plastic by resistance spot welding. Weld Int 32(7):505–512. https://doi.org/10.1080/01431161.2017.1346889

    Article  Google Scholar 

  71. Lionetto F, Balle F, Maffezzoli A (2017) Hybrid ultrasonic spot welding of aluminum to carbon fiber reinforced epoxy composites. J Mater Process Technol 247:289–295. https://doi.org/10.1016/j.jmatprotec.2017.05.002

    Article  CAS  Google Scholar 

  72. Ma Y, Bridges D, Yu Y et al (2019) Joining of Carbon Fiber Reinforced Plastic to Aluminum Alloy by Reactive Multilayer Films and Low Power Semiconductor Laser Heating. Appl Sci 9(2):319. https://doi.org/10.3390/app9020319

    Article  CAS  Google Scholar 

  73. Liu S, Zhou J, Li Y et al (2019) Using reaction heat of laser-induced AlTiC interlayer to connect CFRTP/aluminum. Opt Laser Technol 113:365–373. https://doi.org/10.1016/j.optlastec.2018.12.044

    Article  CAS  Google Scholar 

  74. Nagatsuka K, Yoshida S, Tsuchiya A et al (2015) Direct joining of carbon-fiber–reinforced plastic to an aluminum alloy using friction lap joining. Compos Part B 73:82–88. https://doi.org/10.1016/j.compositesb.2014.12.029

    Article  CAS  Google Scholar 

  75. Jung KW, Kawahito Y, Takahashi M et al (2013) Laser direct joining of carbon fiber reinforced plastic to zinc-coated steel. Mater Des 47:179–188. https://doi.org/10.1016/j.matdes.2012.12.015

    Article  CAS  Google Scholar 

  76. Goushegir SM, Dos Santos JF, Amancio-Filho ST (2014) Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly (phenylene sulfide) composite single lap joints: microstructure and mechanical performance. Mater Des 54:196–206. https://doi.org/10.1016/j.matdes.2013.08.034

    Article  CAS  Google Scholar 

  77. Woizeschke P, Wottschel V (2013) Recent Developments for Laser Beam Joining of CFRP-aluminum Structures. Procedia Mater Sci 2:250–258. https://doi.org/10.1016/j.mspro.2013.02.031

    Article  CAS  Google Scholar 

  78. Tan X, Zhang J, Shan J et al (2015) Characteristics and formation mechanism of porosities in CFRP during laser joining of CFRP and steel. Compos Part B 70:35–43. https://doi.org/10.1016/j.compositesb.2014.10.023

    Article  CAS  Google Scholar 

  79. Lin J, Zhang J, Min J et al (2021) Laser-assisted conduction joining of carbon fiber reinforced sheet molding compound to dual-phase steel by a polycarbonate interlayer. Opt Laser Technol 133:106561. https://doi.org/10.1016/j.optlastec.2020.106561

    Article  CAS  Google Scholar 

  80. Sinke J (2007) Forming technology for composite/metal hybrids. Woodhead Publishing, Cambridge

    Google Scholar 

  81. Li H, Tian J, Fei W et al (2019) Spring-back and failure characteristics of roll bending of GLARE laminates. Mater Res Express 6(8):0865b2. https://doi.org/10.1088/2053-1591/ab2109

  82. Hu Y, Zhang W, Jiang W et al (2016) Effects of exposure time and intensity on the shot peen forming characteristics of Ti/CFRP laminates. Compos Part A 91:96–104. https://doi.org/10.1016/j.compositesa.2016.09.019

    Article  CAS  Google Scholar 

  83. Russig C, Bambach M, Hirt G et al (2014) Shot peen forming of fiber metal laminates on the example of GLARE®. Int J Mater Form 7(4):425–438. https://doi.org/10.1007/s12289-013-1137-8

    Article  Google Scholar 

  84. Li H, Zhang W, Jiang W et al (2018) The feasibility research on shot-peen forming of the novel fiber metal laminates based on aluminum-lithium alloy. Int J Adv Manuf Technol 96(1):587–596. https://doi.org/10.1007/s00170-018-1627-4

    Article  Google Scholar 

  85. Yocom CJ, Zhang X, Liao Y (2018) Research and development status of laser peen forming: A review. Opt Laser Technol 108:32–45. https://doi.org/10.1016/j.optlastec.2018.06.032

    Article  CAS  Google Scholar 

  86. Luo M, Hu Y, Hu L et al (2020) Efficient process planning of laser peen forming for complex sha** with distributed eigen-moment. J Mater Process Technol 279:116588. https://doi.org/10.1016/j.jmatprotec.2020.116588

    Article  Google Scholar 

  87. Hu Y, Zheng X, Wang D et al (2015) Application of laser peen forming to bend fiber metal laminates by high dynamic loading. J Mater Process Technol 226:32–39. https://doi.org/10.1016/j.jmatprotec.2015.07.003

    Article  CAS  Google Scholar 

  88. Gisario A, Barletta M (2018) Laser forming of glass laminate aluminium reinforced epoxy (GLARE): On the role of mechanical, physical and chemical interactions in the multi-layers material. Opt Laser Eng 110:364–376. https://doi.org/10.1016/j.optlaseng.2018.06.013

    Article  Google Scholar 

  89. Carey C, Cantwell WJ, Dearden G et al (2010) Towards a rapid, non-contact sha** method for fiber metal laminates using a laser source. Int J Adv Manuf Technol 47:557–565. https://doi.org/10.1007/s00170-009-2229-y

    Article  Google Scholar 

  90. Fiorotto M, Sorgente M, Lucchetta G (2010) Preliminary studies on single point incremental forming for composite materials. Int J Mater Form 3:951–954. https://doi.org/10.1007/s12289-010-0926-6

    Article  Google Scholar 

  91. Amar ALO, Graf A, Kräusel V et al (2019) Heat supported single point incremental forming of hybrid laminates for orthopedic applications. Procedia Manuf 29:21–27. https://doi.org/10.1016/j.promfg.2019.02.101

    Article  Google Scholar 

  92. Fischer T, Grubenmann M, Harhash M et al (2021) Experimental and numerical investigations on the quasi-static structural properties of fibre metal laminates processed by thermoforming. Compos Struct 258:113418. https://doi.org/10.1016/j.compstruct.2020.113418

    Article  CAS  Google Scholar 

  93. Blala H, Lang L, Khan S et al (2021) A comparative study on the GLARE stamp forming behavior using cured and non-cured preparation followed by hot-pressing. Int J Adv Manuf Technol 1–13. https://doi.org/10.1007/s00170-021-07196-y

  94. Gresham J, Cantwell W, Cardew-Hall MJ et al (2006) Drawing behaviour of metal–composite sandwich structures. Compos Struct 75(1–4):305–312. https://doi.org/10.1016/j.compstruct.2006.04.010

    Article  Google Scholar 

  95. Mennecart T, Hiegemann L, Khalifa NB (2017) Analysis of the forming behaviour of in-situ drawn sandwich sheets. Procedia Eng 207:890–895. https://doi.org/10.1016/j.proeng.2017.10.847

    Article  CAS  Google Scholar 

  96. Mennecart T, Werner H, Ben Khalifa N et al (2018) Developments and analyses of alternative processes for the manufacturing of fiber metal laminates. ASME 13th International Manufacturing Science and Engineering Conference 2018–6447. https://doi.org/10.1115/MSEC2018-6447

  97. Abouhamzeh M, Nardi D, Leonard R et al (2018) Effect of prepreg gaps and overlaps on mechanical properties of fiber metal laminates. Compos Part A 114:258–268. https://doi.org/10.1016/j.compositesa.2018.08.028

    Article  CAS  Google Scholar 

  98. Vistein M, Deden D, Glück R et al (2019) Automated Production of Large Fiber Metal Laminate Aircraft Structure Parts. Procedia Manuf 38:1300–1307. https://doi.org/10.1016/j.promfg.2020.01.160

    Article  Google Scholar 

  99. Rajak DK, Pagar DD, Menezes PL et al (2019) Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 11(10):1667. https://doi.org/10.3390/polym11101667

    Article  CAS  Google Scholar 

  100. Vasudevan A, Kumar BN, Depoures MV et al (2021) Tensile and flexural behaviour of glass fibre reinforced plastic–Aluminium hybrid laminate manufactured by vacuum resin transfer moulding technique (VARTM). Mater Today: Proc 37:2132–2140. https://doi.org/10.1016/j.matpr.2020.07.573

    Article  CAS  Google Scholar 

  101. Cui Z, Liu Q, Sun Y et al (2020) On crushing responses of filament winding CFRP/aluminum and GFRP/CFRP/aluminum hybrid structures. Compos Part B 200:108341. https://doi.org/10.1016/j.compositesb.2020.108341

    Article  CAS  Google Scholar 

  102. Nikravesh Y, Muralidharan K, Frantziskonis G (2021) Techno-economic assessment and design optimization of compressed air energy storage using filament wound carbon fiber reinforced plastic pressure vessels. J Energy Storage 40:102754. https://doi.org/10.1016/j.est.2021.102754

    Article  Google Scholar 

  103. Liu G, Yang F, Bai Y et al (2021) Enhancement of bonding strength between polyethylene/graphene flakes composites and stainless steel and its application in type IV storage tanks. J Energy Storage 42:103142. https://doi.org/10.1016/j.est.2021.103142

    Article  Google Scholar 

  104. Krishna GV, Narayanamurthy V, Viswanath C (2020) Modeling the buckling characteristics of the metal-FRP hybrid cylinder. Compos Struct 250:112505. https://doi.org/10.1016/j.compstruct.2020.112505

    Article  Google Scholar 

  105. Balakrishnan VS, Hart-Rawung T, Buhl J et al (2020) Impact and damage behaviour of FRP-metal hybrid laminates made by the reinforcement of glass fibers on 22MnB5 metal surface. Compos Sci Technol 187:107949. https://doi.org/10.1016/j.compscitech.2019.107949

    Article  CAS  Google Scholar 

  106. Takeda T, Yasuoka T, Hoshi H et al (2019) Effectiveness of flame-based surface treatment for adhesive bonding of carbon fiber reinforced epoxy matrix composites. Compos Part A 119:30–37. https://doi.org/10.1016/j.compositesa.2019.01.013

  107. Dhaliwal GS, Newaz GM (2019) Experimental and numerical investigation of flexural behavior of hat sectioned aluminum/carbon fiber reinforced mixed material composite beam. Compos Part B 182:107642. https://doi.org/10.1016/j.compositesb.2019.107642

    Article  CAS  Google Scholar 

  108. Yang G, Yang T, Yuan W et al (2019) The influence of surface treatment on the tensile properties of carbon fiber-reinforced epoxy composites-bonded joints. Compos Part B 160:446–456. https://doi.org/10.1016/j.compositesb.2018.12.095

    Article  CAS  Google Scholar 

  109. Arai S, Kawahito Y, Katayama S (2014) Effect of surface modification on laser direct joining of cyclic olefin polymer and stainless steel. Mater Des 59:448–453. https://doi.org/10.1016/j.matdes.2014.03.018

    Article  CAS  Google Scholar 

  110. Bahlakeh G, Ramezanzadeh B (2017) A detailed molecular dynamics simulation and experimental investigation on the interfacial bonding mechanism of an epoxy adhesive on carbon steel sheets decorated with a novel cerium–lanthanum nanofilm. ACS Appl Mater Interfaces 9(20):17536–17551. https://doi.org/10.1021/acsami.7b00644

  111. Baldan A (2012) Adhesion phenomena in bonded joints. Int J Adhes Adhes 38(4):95–116. https://doi.org/10.1016/j.ijadhadh.2012.04.007

    Article  CAS  Google Scholar 

  112. Rodríguez-Vidal E, Sanz C, Soriano C et al (2016) Effect of metal micro-structuring on the mechanical behavior of polymer-metal laser T-joints. J Mater Process Technol 229:668–677. https://doi.org/10.1016/j.jmatprotec.2015.10.026

    Article  CAS  Google Scholar 

  113. Lin J, Sun C, Min J et al (2020) Effect of atmospheric pressure plasma treatment on surface physicochemical properties of carbon fiber reinforced polymer and its interfacial bonding strength with adhesive. Compos Part B 199:108237. https://doi.org/10.1016/j.compositesb.2020.108237

    Article  CAS  Google Scholar 

  114. Wu C (2011) Competitive absorption of epoxy monomers on carbon nanotube: a molecular simulation study. J Polym Sci Part B: Polym Phys 49:1123–1130. https://doi.org/10.1002/polb.22287

    Article  CAS  Google Scholar 

  115. Heckert A, Zaeh MF (2014) Laser surface pre-treatment of aluminium for hybrid joints with glass fiber reinforced thermoplastics. Phys Procedia 56:1171–1181. https://doi.org/10.1016/j.phpro.2014.08.032

    Article  CAS  Google Scholar 

  116. Duan Y, Wu X, Wang Z et al (2020) Improvement of the interlaminar mechanical properties of carbon fiber reinforced plastics-thermoformed steel super-hybrid laminates. Acta Mater Compos Sin 37(10):2418–2427 (in Chinese). https://doi.org/10.13801/j.cnki.fhclxb.20200215.002

  117. Liu J, Chaudhury MK, Berry DH et al (2006) Effect of surface morphology on crack growth at a sol–gel reinforced epoxy/aluminium interface. J Adhes 82:487–516. https://doi.org/10.1080/00218460600713725

    Article  CAS  Google Scholar 

  118. Wang B, Bai Y, Hu X et al (2016) Enhanced epoxy adhesion between steel plates by surface treatment and CNT/short-fiber reinforcement. Compos Sci Technol 127:149–157. https://doi.org/10.1016/j.compscitech.2016.03.008

    Article  CAS  Google Scholar 

  119. Ramaswamy K, O’Higgins RM, Kadiyala AK et al (2020) Evaluation of grit-blasting as a pre-treatment for carbon-fiber thermoplastic composite to aluminium bonded joints tested at static and dynamic loading rates. Compos Part B 185:107765. https://doi.org/10.1016/j.compositesb.2020.107765

    Article  CAS  Google Scholar 

  120. Balakrishnan VS, Obrosov A, Kuke F et al (2019) Influence of metal surface preparation on the flexural strength and impact damage behaviour of thermoplastic FRP reinforced metal laminate made by press forming. Compos Part B 173:106883. https://doi.org/10.1016/j.compositesb.2019.05.094

    Article  CAS  Google Scholar 

  121. Sun C, Min J, Lin J et al (2019) Effect of atmospheric pressure plasma treatment on adhesive bonding of carbon fiber reinforced polymer. Polymers 11(1):139. https://doi.org/10.3390/polym11010139

    Article  CAS  Google Scholar 

  122. Wu Y, Lin J, Carlson BE et al (2016) Effect of laser ablation surface treatment on performance of adhesive-bonded aluminum alloys. Surf Coat Technol 304:340–347. https://doi.org/10.1016/j.surfcoat.2016.04.051

    Article  CAS  Google Scholar 

  123. Schäfer J, Hofmann T, Holtmannspötter J et al (2015) Atmospheric-pressure plasma treatment of polyamide 6 composites for bonding with polyurethane. J Adhes Sci Technol 29(17):1807–1819. https://doi.org/10.1080/01694243.2015.1037380

    Article  CAS  Google Scholar 

  124. Zhang Z, Shan JG, Tan XH et al (2016) Effect of anodizing pretreatment on laser joining CFRP to aluminum alloy A6061. Int J Adhes Adhes 70:142–151. https://doi.org/10.1016/j.ijadhadh.2016.06.007

    Article  CAS  Google Scholar 

  125. Shanmugam L, Kazemi ME, Rao Z et al (2020) On the metal thermoplastic composite interface of Ti alloy/UHMWPE-Elium® laminates. Compos Part B 181:107578. https://doi.org/10.1016/j.compositesb.2019.107578

    Article  CAS  Google Scholar 

  126. Shanmugam L, Kazemi ME, Qiu C et al (2020) Influence of UHMWPE fiber and Ti6Al4V metal surface treatments on the low-velocity impact behavior of thermoplastic fiber metal laminates. Adv Compos Hybrid Mater 3(4):1–14. https://doi.org/10.1007/s42114-020-00189-7

    Article  CAS  Google Scholar 

  127. Wang H, ** K, Wang C et al (2019) Effect of fiber surface functionalization on shear behavior at carbon fiber/epoxy interface through molecular dynamics analysis. Compos Part A 126:105611. https://doi.org/10.1016/j.compositesa.2019.105611

    Article  CAS  Google Scholar 

  128. Comyn J, Mascia L, **ao G (1996) Plasma-treatment of polyetheretherketone (PEEK) for adhesive bonding. Int J Adhes Adhes 16:97–104. https://doi.org/10.1016/0143-7496(96)89798-3

    Article  CAS  Google Scholar 

  129. Kim JG, Choi I, Seo IS (2011) Flame and silane treatments for improving the adhesive bonding characteristics of aramid/epoxy composites. Compos Struct 93(11):2696–2705. https://doi.org/10.1016/j.compstruct.2011.06.002

    Article  Google Scholar 

  130. Lim SJ, Cheon J, Kim M (2020) Effect of laser surface treatments on a thermoplastic PA 6/carbon composite to enhance the bonding strength. Compos Part A 137:105989. https://doi.org/10.1016/j.compositesa.2020.105989

    Article  CAS  Google Scholar 

  131. Zhu C, Wan H, Min J et al (2019) Application of pulsed Yb: Fiber laser to surface treatment of Al alloys for improved adhesive bonded performance. Opt Laser Eng 119:65–76. https://doi.org/10.1016/j.optlaseng.2019.03.017

    Article  Google Scholar 

  132. Wan H, Lin J, Min J (2018) Effect of laser ablation treatment on corrosion resistance of adhesive-bonded Al alloy joints. Surf Coat Technol 345:13–21. https://doi.org/10.1016/j.surfcoat.2018.03.087

    Article  CAS  Google Scholar 

  133. Sun C, Min J, Lin J et al (2018) The Effect of Laser Ablation Treatment on the Chemistry, Morphology and Bonding Strength of CFRP Joints. Int J Adhes Adhes 84:325–334. https://doi.org/10.1016/j.ijadhadh.2018.04.014

    Article  CAS  Google Scholar 

  134. Cho BG, Hwang SH, Park M et al (2019) The effects of plasma surface treatment on the mechanical properties of polycarbonate/carbon nanotube/carbon fiber composites. Compos Part B 160:436–445. https://doi.org/10.1016/j.compositesb.2018.12.062

    Article  CAS  Google Scholar 

  135. Wan H, Min J, Zhang J et al (2020) Effect of adherend deflection on lap-shear tensile strength of laser-treated adhesive-bonded joints. Int J Adhes Adhes 97:102481. https://doi.org/10.1016/j.ijadhadh.2019.102481

    Article  CAS  Google Scholar 

  136. Wang X, Lin J, Min J et al (2018) Effect of atmospheric pressure plasma treatment on strength of adhesive-bonded aluminum AA5052. J Adhes 94(9):701–722. https://doi.org/10.1080/00218464.2017.1393747

    Article  CAS  Google Scholar 

  137. Zinn C, Bobbert M, Dammann C et al (2018) Shear strength and failure behaviour of laser nano-structured and conventionally pre-treated interfaces in intrinsically manufactured CFRP-steel hybrids. Compos Part B 151:173–185. https://doi.org/10.1016/j.compositesb.2018.05.030

    Article  CAS  Google Scholar 

  138. Zaldivar RJ, Kim HI, Steckel GL et al (2010) Effect of processing parameter changes on the adhesion of plasma-treated carbon fiber reinforced epoxy composites. J Compos Mater 44(12):1435–1453. https://doi.org/10.1177/0021998309355846

    Article  CAS  Google Scholar 

  139. Wang Z, Bobbert M, Dammann C et al (2016) Influences of interface and surface pretreatment on the mechanical properties of metal-CFRP hybrid structures manufactured by resin transfer moulding. Int J Automot Compos 2(3–4):272–298. https://doi.org/10.1504/IJAUTOC.2016.084323

    Article  Google Scholar 

  140. Min J, Wan H, Carlson BE et al (2020) Application of laser ablation in adhesive bonding of metallic materials: A review. Opt Laser Technol 128:106188. https://doi.org/10.1016/j.optlastec.2020.106188

    Article  CAS  Google Scholar 

  141. Wan H, Min J, Carlson BE et al (2021) Spindle-shaped surface microstructure inspired by directional water collection biosystems to enhance interfacial wetting and bonding strength. ACS Appl Mater Interfaces 13(11):13760–13770. https://doi.org/10.1021/acsami.0c21857

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to greatly thank the financial support from the National Natural Science Foundation of China (No. 51805375), and they would also like to thank the four anonymous reviewers of the journal Advanced Composites and Hybrid Materials, whose comments/suggestions helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junying Min.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, J., Hu, J., Sun, C. et al. Fabrication processes of metal-fiber reinforced polymer hybrid components: a review. Adv Compos Hybrid Mater 5, 651–678 (2022). https://doi.org/10.1007/s42114-021-00393-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00393-z

Keywords

Navigation