Log in

Direct-Seeded Rice + Brahmi (Bacopa monnieri) Intercrop** and Weed Management Practices Affects Weed Control Efficiency and Competitive Indices

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Weed menace is the major biotic constraint in direct-seeded rice (DSR) cultivation as they cause higher yield loss. Hence, exploring different weed management options along with intercrop** could be promising practice for improving crop productivity. Kee** this in view, an experiment was conducted at Pantnagar, Uttarakhand, India in 2015 and 2016 to evaluate the effect of different weed management practices in the DSR + Brahmi intercrop** system for providing farmers with a practical and economically viable weed control solution. Two intercrop** ratios along with four weed management practices in sole rice and sole Brahmi as control were evaluated. The results revealed the significant effect of weed management and intercrop** on weed control efficiency (WCE) and different competition indices. The highest WCE (73.3 and 83.3%) was recorded with pendimethalin (pre-emergence) + cyhalofop-butyl (post-emergence) + 1 HW (hand weeding) at 45 DAS (days after sowing) in 2:1 ratio treatment. Similarly, significantly minimum density and weed biomass were also recorded under the same treatment. However, significantly higher values of relative yield total, aggressivity, relative crowding coefficient, and competition ratio were recorded in a 1:1 ratio of DSR + Brahmi. In conclusion, using Brahmi as an intercrop with DSR can help with weed management, reduces the use of pesticides, and increases profitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

References

  • Adaniyan, O. N., Akande, S. R., Balogun, M. O., & Saka, J. O. (2007). Evaluation of crop yield of African yam bean, maize and kenaf under intercrop** systems. American-Eurasian Journal of Agricultural and Environmental Sciences, 2, 99–102.

    Google Scholar 

  • Ahlawat, I. P. S., Gangaiah, B., & Singh, O. (2005). Production potential of chickpea (Cicer arietinum)-based intercrop** systems under irrigated conditions. Indian Journal of Agronomy, 50, 27–30.

    Google Scholar 

  • Anwar, M. P., Juraimi, A. S., Puteh, A., Selamat, A., & Man, A. (2011). Seeding method and rate influence on weed suppression in aerobic rice. African Journal of Biotechnology, 10, 15259–15271.

    Article  CAS  Google Scholar 

  • Bybee-Finley, K. A., Mirsky, S. B., & Ryan, M. R. (2017). Crop biomass not species richness drives weed suppression in warm-season annual grass-legume intercrops in the northeast. Weed Science, 65, 669–680.

    Article  Google Scholar 

  • Dapaah, H. K., Asafu-Agyei, J. N., Ennin, S. A., & Yamoah, C. (2003). Yield stability of cassava, maize, soybean and cowpea intercrops. Journal of Agricultural Science, 140, 73–82. https://doi.org/10.1017/S0021859602002770

    Article  Google Scholar 

  • De Wit, C. T. (1960). On competition. Verslag Landbouwk Onderzoek, 66, 1–82.

    Google Scholar 

  • De Wit, C. T., & Van den Berg, J. P. (1965). Competition among herbage plants. Netherlands Journal of Agriculture Science, 13, 212–221.

    Article  Google Scholar 

  • Dhima, K. V., Lithourgidis, A. S., Vasilakoglou, I. B., & Dordas, C. A. (2007). Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Research, 100, 249–256. https://doi.org/10.1016/j.fcr.2006.07.008

    Article  Google Scholar 

  • FAOSTAT. (2021). FAO Statistical Year book World Food and Agriculture. Retreived from http://www.fao.org/economic/ess/ess-publications/essyearbook/en/#.U68A8vmSziU/. Accessed Sept 2021

  • Ganai, M. A., Hussain, A., & Bhat, M. A. (2014). Bio-efficacy of different herbicides in direct- seeded rice (Oryza sativa) under temperate Kashmir valley conditions. Indian Journal of Agronomy, 59, 86–90.

    Google Scholar 

  • Ghosh, P. K. (2004). Growth, yield, competition and economics of groundnut/cereal fodder intercrop** systems in the semi-arid tropics of India. Field Crops Research, 88, 227–237. https://doi.org/10.1016/j.fcr.2004.01.015

    Article  Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed., p. 680). Wiley.

    Google Scholar 

  • Huang, C. D., Liu, Q. Q., Li, X. L., & Zhang, C. C. (2019). Effect of intercrop** on maize grain yield and yield components. Journal of Integrated Agriculture, 8, 690–1700.

    Google Scholar 

  • **ger, D., Dhar, S., Dass, A., Sharma, V. K., Joshi, E., Vijayakumar, S., & Gupta, G. (2018). Effect of silicon and phosphorus fertilization on growth, productivity and profitability of aerobic rice (Oryza sativa). Indian Journal of Agricultural Sciences, 88, 1600–1605.

    Article  Google Scholar 

  • **ger, D., Dhar, S., Dass, A., Sharma, V. K., Paramesh, V., Parihar, M., Joshi, E., Singhal, V., Gupta, G., Prasad, D., & Vijayakumar, S. (2021). Co-fertilization of silicon and phosphorus influenced influences the dry matter accumulation, grain yield, nutrient uptake, and nutrient-use efficiencies of aerobic rice. SILICON, 13(7), 1–15. https://doi.org/10.1007/s12633

    Article  Google Scholar 

  • **ger, D., Dhar, S., Dass, A., Sharma, V. K., Shukla, L., Parihar, M., Rana, K., Gupta, G., & Jatav, H. S. (2020). Crop productivity, grain quality, water use efficiency, and soil enzyme activity as influenced by silicon and phosphorus application in aerobic rice (Oryza sativa). Communications in Soil Science and Plant Analysis, 51, 2147–2162.

    Article  CAS  Google Scholar 

  • **ger, D., Kaur, R., Kaur, N., Rajanna, G. A., Kumari, K., & Dass, A. (2017). Weed dynamics under changing climatic scenario: A Review. International Journal of Currnt Microbiology Applied Science, 6, 2376–2388.

    Article  CAS  Google Scholar 

  • **ger, D., Sharma, R., & Dass, A. (2016a). Effect of sequential application of herbicides on weed control indices and productivity of rainy-season greengram (Vigna radiata) in north Indian plains. Indian Journal of Agronomy, 61, 112–114.

    CAS  Google Scholar 

  • **ger, D., Sharma, R., Dass, A., Shukla, L., & Singh, S. B. (2016c). Effect of sequential application of herbicides on yield and nutrient uptake of greengram (Vigna radiata L. Wilczek), soil microbial parameter and Imazethapyr residue status in soil. Annals of Agricultural Research, 37, 1–7.

    CAS  Google Scholar 

  • **ger, D., Sharma, R., & Sepat, S. (2016b). Weed biomass and yield of greengram (Vigna radiata) as affected by sequential application of herbicides in Indo-Gangetic Plains. Indian Journal of Agricultural Sciences, 86, 418–422.

    CAS  Google Scholar 

  • Joshi, N., Pandey, S. T., Singh, V. P., Kumar, A., & Gautam, P. (2017). Relationship of physiological attributes and nitrogen with yield of direct seeded rice and brahmi. International Journal of Chemistry Studies, 5, 87–90.

    Google Scholar 

  • Joshi, N., Pandey, S. T., Singh, V. P., Kumar, A., & Gautam, P. (2019a). Weed management in direct seeded rice (Oryza sativa) + brahmi (Bacopa monnieri) intercrop** system. Indian Journal of Agronomy, 64, 23–27.

    Google Scholar 

  • Joshi, N., Pandey, S. T., Singh, V. P., Kumar, A., & Gautam, P. (2019b). Weed management practices in rice (Oryza sativa) + brahmi (Bacopa monnieri) intercrop** system. Indian Journal of Agricultural Sciences, 89, 1612–1616.

    Article  CAS  Google Scholar 

  • Khanal, U., Stott, K. J., Armstrong, R., Nuttall, J. G., Henry, F., Christy, B. P., Mitchell, M., Riffkin, P. A., Wallace, A. J., McCaskill, M., & Thayalakumaran, T. (2021). Intercrop**—Evaluating the advantages to broadacre systems. Agriculture, 11, 453. https://doi.org/10.3390/agriculture11050453

    Article  Google Scholar 

  • Kitonyo, O. M., Cheminingwa, G. N., & Muthomi, J. W. (2013). Productivity of farmer-preferred maize varieties intercropped with beans in semi-arid Kenya. International Journal of Agronomy Agriculture Research, 3, 6–16.

    Google Scholar 

  • Kumar, S., Shivani, J. M., Mishra, J. S., Kumar, S., & Bharati, R. C. (2018). Efficacy of pre- and post-emergence herbicides on complex weed flora indirect-seeded rice (Oryza sativa) in the eastern plains. Indian Journal of Agriculture Science, 88(3), 387–392.

    CAS  Google Scholar 

  • Kumawat, A., Sepat, S., Kumar, D., Singh, S., **ger, D., Bamboriya, S. D., & Verma, A. K. (2017). Effect of irrigation scheduling and nitrogen application on yield, grain quality and soil microbial activities in direct-seeded rice. International Journal of Current Microbiology Applied Science., 6, 2855–2860. https://doi.org/10.20546/ijcmas.2017.605.323

    Article  CAS  Google Scholar 

  • Layek, J., Shivakumar, B. G., Rana, D. S., Munda, S., Lakshman, K., Das, A., & Ramkrushna, G. I. (2014). Soybean–cereal intercrop** systems as influenced by nitrogen nutrition. Agronomy Journal, 106, 1933–1946. https://doi.org/10.2134/agronj13.052

    Article  Google Scholar 

  • Lv, H., Cao, H., Nawaz, M. A., Sohail, H., Huang, Y., Cheng, F., Kong, Q., & Bie, Z. (2018). Wheat intercrop** enhances the resistance of watermelon to fusarium wilt. Frontiers in Plant Science, 9, 696. https://doi.org/10.3389/fpls.2018.00696

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahajan, G., Kaur, G., & Vhauhan, B. S. (2017). Seeding rate and genotype effects on weeds and yield of dry-seeded rice. Crop Protection, 96, 68–76.

    Article  Google Scholar 

  • Maitra, S., Hossain, A., Brestic, M., Skalicky, M., Ondrisik, P., Gitari, H., Brahmachari, K., Shankar, T., Bhadra, P., Palai, J. B., & Jena, J. (2021). Intercrop**—A low input agricultural strategy for food and environmental security. Agronomy, 11, 343. https://doi.org/10.3390/agronomy11020343

    Article  CAS  Google Scholar 

  • Marin, C., & Weiner, J. (2014). Effects of density and sowing pattern on weed suppression and grain yield in three varieties of maize under high weed pressure. Weed Research, 54, 467–474.

    Article  Google Scholar 

  • Masilionyte, L., Maiksteniene, S., Kriauciuniene, Z., Jablonskyte-Rasce, D., Zou, L., & Sarauskis, E. (2017). Effect of cover crops in smothering weeds and volunteer plants in alternative farming systems. Crop Protection, 91, 74–81. https://doi.org/10.1016/j.cropro.2016.09.016

    Article  Google Scholar 

  • McGilchrist, C. A. (1965). Analysis of competition experiments. Biometrics, 21, 975–985. https://doi.org/10.2307/2528258

    Article  Google Scholar 

  • Mondal, D., Ghosh, A., Bandopadhyay, P., & Ghosh, R. K. (2018). Influence of herbicide mixture on composite weed flora andyield of transplanted rice under system of rice intensification. Journal of Hill Agriculture, 9(1), 49–54.

    Article  Google Scholar 

  • Park, T. S., Seong, G. Y., Cho, H., Seo, M., Kang, H. W., & Park, K. W. (2014). Current status, mechanism and control of herbicide resistant weeds in rice fields of Korea. Korean Journal of Agricultural Science, 41(2), 85–99. https://doi.org/10.7744/CNUJAS.2014.41.2.085.

    Article  Google Scholar 

  • Patel, G. L., Patel, Z. G., & Patel, R. B. (1983). Integrated weed management in onion crop. Indian Journal of Weed Science, 15, 7–11.

    Google Scholar 

  • Rathika, S., Velayudham, K., Thavaprakaash, N., & Ramesh, T. (2013). Weed Smothering Efficiency and Productivity asi nfluenced by crop geometry and intercrop** in Baby Corn (Zea mays L.). International Journal of Agriculture Environment Biotechnogy, 6(3), 344–350.

    Google Scholar 

  • Sen, S., Ramanjit, K., Das, T. K., Shivay, Y. S., Sahoo, P. M., Ramanjit, K., et al. (2018). Bioefficacyof sequentially applied herbicides on weed competition and crop performance in dry direct-seeded rice (Oryza sativa). Indian J Agron, 63(2), 230–233.

    Google Scholar 

  • Severino, F. J., & Christofolleti, P. J. (2004). Weed suppression by smother crops and selective herbicides. Scientia Agricola., 61(1), 21–26.

    Article  CAS  Google Scholar 

  • Shrestha, M., Baral, B., & Dulal, P. R. (2021). A review on weed in direct seeded rice (DSR). Sustainable Food Agriculture, 2(2), 99–104.

    Article  Google Scholar 

  • Singhal, V., Ghose, J., & **ger, D. (2020). Cover crop technology—A way towards conservation agriculture: A review. Indian Journal of Agricultural Sciences, 90, 2275–2284.

    CAS  Google Scholar 

  • Srivastava, R. K., & Bohra, J. S. (2006). Performance of wheat (Triticum aestivum) + Indian mustard (Brassica juncea) intercrop** in relation row ratio, Indian mustard variety and fertility levels. Indian Journal of Agronomy, 51, 107–111.

    Google Scholar 

  • Stefan, L., Engbersen, N., & Schob, C. (2021). Crop–weed relationships are context-dependent and cannot fully explain the positive effects of intercrop** on yield. Ecological Applications. https://doi.org/10.1002/eap.2311

    Article  PubMed  PubMed Central  Google Scholar 

  • Stomph, T. J., Dordas, C., Baranger, A., de Rijk, J., Dong, B., Evers, J., Gu, C., Li, L., Simon, J., Jensen, E. S., Wang, Q., Wang, Y., Wang, Z., Xu, H., Zhang, C., Zhang, L., Zhang, W., Bedoussac, L., & van der Werf, W. (2020). Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles? Advances in Agronomy, 160, 1–50.

    Article  Google Scholar 

  • Tessema, Z., & Baar, R. M. T. (2006). Chemical composition, dry matter production and yield 500 dynamics of tropical grasses mixed with perennial forage legumes. Tropical Grassland, 40, 150–156.

    Google Scholar 

  • Thavaprakasha, N., Velayudham, K., & Muthukumar, V. B. (2005). Effect of crop geometry, intercrop** systems and integrated nutrient management practices on productivity of baby corn (Zea mays L.) based intercrop** systems. Research Journal of Agriculture and Biological Sciences, 1, 295–302.

    Google Scholar 

  • Tripathi, H. N., Subhash, C., & Tripathi, A. K. (2005). Biological and economic feasibility of chickpea (Cicer arietinum) + Indian mustard (Brassica juncea) crop** systems under varying levels of phosphorus. Indian Journal of Agronomy, 50, 31–34.

    Google Scholar 

  • Ullah, A., Nawaz, A., Farooq, M., & Siddique, K. H. M. (2021). Agricultural innovation and sustainable development: A case study of rice–wheat crop** systems in South Asia. Sustainability, 13, 1965. https://doi.org/10.3390/su13041965

    Article  CAS  Google Scholar 

  • Undie, L., Uwah, D. F., & Attoe, E. E. (2012). Effect of intercrop** and crop arrangement on yield and productivity of late season maize/soybean mixtures in the humid environment of Southern Nigeria. Journal of Agricultural Science, 4, 37–50. https://doi.org/10.5539/jas.v4n4p37

    Article  Google Scholar 

  • Vijayakumar, S., Kumar, D., **ger, D., Bussa, B., & Panda, B. B. (2021). 4R nutrient stewardship based potassium fertilization for dry-direct seeded rice-wheat crop** system. Indian Farming, 71, 22–25.

    Google Scholar 

  • Von Cossel, M., Wagner, M., Lask, J., Magenau, E., Bauerle, A., Von Cossel, V., Warrach-Sagi, K., Elbersen, B., Staritsky, I., Van Eupen, M., & Iqbal, Y. (2019). Prospects of bioenergy crop** systems for a more social-ecologically sound bio-economy. Agronomy, 9, 605.

    Article  Google Scholar 

  • Weerarathne, L. V. Y., Marambe, B., & Chauhan, B. S. (2017). Intercrop** as an effective component of integrated weed management in tropical root and tuber crops: A review. Crop Protection, 95, 89–100. https://doi.org/10.1016/j.cropro.2016.08.010

    Article  Google Scholar 

  • Weiner, J., Griepentrog, H. W., & Kristensen, L. (2001). Suppression of weeds by spring wheat increases with crop density and spatial uniformity. Journal of Applied Ecology, 38, 784–790.

    Article  Google Scholar 

  • Willey, R. W., & Rao, M. R. (1980). A competitive ratio for quantifying competition between intercrops. Experimental Agriculture, 16, 117–125. https://doi.org/10.1017/S0014479700010802

    Article  Google Scholar 

  • Yuan, S., Linquist, B. A., & Wilson, L. T. (2021). Sustainable intensification for a larger global rice bowl. Nature Communications, 12, 7163. https://doi.org/10.1038/s41467-021-27424-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to the Dean, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar for encouraging the carrying out the investigation and providing valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinesh **ger or Shah Fahad.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest to declare.

Ethical approval

Not applicable.

Consent to participate

All authors agreed to contribute to this study.

Consent to publish

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, N., Pandey, S.T., Singh, V.P. et al. Direct-Seeded Rice + Brahmi (Bacopa monnieri) Intercrop** and Weed Management Practices Affects Weed Control Efficiency and Competitive Indices. Int. J. Plant Prod. 17, 177–191 (2023). https://doi.org/10.1007/s42106-022-00222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-022-00222-3

Keywords

Navigation