Log in

Leaf Area Regulates the Growth Rates and Seed Yield of Soybean (Glycine max L. Merr.) in Intercrop** System

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Biotic or abiotic stresses reduce leaf area of soybean plants in the intercrop** system, especially during critical reproductive growth phase (from pod-initiation to physiological-maturity) of soybean, which finally influences yield and yield components. However, total yield loss due to reduction in soybean leaf area under maize/soybean intercrop** system is still unclear. In a three-year field study, an experiment consisted of four treatments: no removal of trifoliate (CK, 100% leaf area), removal of three-trifoliate (SI, 85% leaf area), removal of six-trifoliate (SII, 70% leaf area), and removal of nine-trifoliate (SIII, 55% leaf area) from the top of the soybean canopy under maize/soybean intercrop**. These defoliation treatments were applied at the pod initiation (R3) stage by removing the different number of fully developed trifoliate from the top of the soybean canopy in maize/soybean intercrop** system. Results revealed that defoliation significantly decreased total dry matter accumulation and partitioning to vegetative and reproductive organs. Compared with CK (no defoliation), treatments SI, SII, and SIII reduced crop growth rate (by 25%, 46%, and 75%), reproductive growth rate (by 21%, 44%, and 63%), pod-initiation (by 11%, 23%, and 32%), while increased pod-abscission (by 11%, 20%, and 37%) and photosynthetic-rate (by 8%, 19%, and 28%), respectively at physiological-maturity. These negative responses reduced pods plant−1 by 16%, 32%, and 49% and seeds plant−1 by 20%, 34%, and 46% in SI, SII, and SIII, respectively, compared to non-defoliated. Overall, in SI, SII, and SIII, soybean produced 80%, 67%, and 55% of CK yield. Results implied that any change in leaf area of intercropped-soybean, especially during reproductive phase, will directly affect the availability of photoassimilates and nutrients for develo** pods and seeds. Thus, more attention should be paid to improve leaf area of intercropped soybean for the high productivity of intercrop** systems via appropriate variety selection or planting arrangement. Furthermore, breeders can evolve new soybean varieties, particularly for the intercrop** systems, which can cope with the shading effects of tall crops in intercrop** systems. Future studies are needed to understand the internal signaling and the molecular mechanism controlling in soybean in intercrop** system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addo-Quaye, A. A., Darkwa, A. A., & Ocloo, G. K. (2011). Yield and productivity of component crops in a maize-soybean intercrop** system as affected by time of planting and spatial arrangement. Journal of Agricultural and Biological Science, 6, 50–57.

    Google Scholar 

  • Ahmad, S., Ali, H., Ur Rehman, A., Khan, R. J., Ahmad, W., Fatima, Z., et al. (2015). Measuring leaf area of winter cereals by different techniques: a comparison. Pakistan Journal of Life and Social Sciences, 13(2), 117–125.

    Google Scholar 

  • Anjum, M. A., Qasim, S. A., Ahmad, S., & Hussain, S. (2015). Assessment of advantages of pea and non-legume winter vegetable intercrop** systems through competition and economic indices. Experimental Agriculture, 51(3), 327–343.

    Article  Google Scholar 

  • Basuchaudhuri, P. (2016). Source-sink relationships in soybean. Ind J Plant Sci, 5, 19–25.

    Google Scholar 

  • Board, J. E., & Harville, B. G. (1994). A criterion for acceptance of narrow-row culture in soybean. Agronomy Journal, 86, 1103–1106.

    Article  Google Scholar 

  • Board, J. E., & Tan, Q. (1995). Assimilatory capacity effects on soybean yield components and pod number. Crop Science, 35, 846–851.

    Article  Google Scholar 

  • Chen, P., Du, Q., Liu, X., Zhou, L., Hussain, S., Lei, L., Song, C., Wang, X., Liu, W., & Yang, F. (2017). Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercrop** system. PloS One, 12, e0184503.

    Article  PubMed  PubMed Central  Google Scholar 

  • Christy, A. L., & Porter, C. A. (1982). Canopy photosynthesis and yield in soybean. Academic Press.

    Book  Google Scholar 

  • Du, J.-B., Han, T.-F., Gai, J.-Y., Yong, T.-W., Sun, X., Wang, X.-C., Yang, F., Liu, J., Shu, K., & Liu, W.-G. (2017). Maize-soybean strip intercrop**: Achieved a balance between high productivity and sustainability. Journal of Integrative Agriculture, 16, 60345–60347.

    Google Scholar 

  • Egli, D. B. (1999). Variation in leaf starch and sink limitations during seed filling in soybean. Crop Science, 39, 1361–1368.

    Article  CAS  Google Scholar 

  • Egli DE (2010a). 6 Soybean Yield Physiology: Principles. The Soybean: Botany, Production and Uses, 113.

  • Egli, D. E. (2010b). SOYPOD: A model of fruit set in soybean. Agronomy Journal, 102, 39–47.

    Article  Google Scholar 

  • Egli, D. B., & Zhen-Wen, Y. (1991). Crop growth rate and seeds per unit area in soybean. Crop Science, 31, 439–442.

    Article  Google Scholar 

  • Fan, Y., Chen, J., Cheng, Y., Raza, M. A., Wu, X., Wang, Z., Liu, Q., Wang, R., Wang, X., & Yong, T. (2018). Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercrop** system. PLoS One, 13, e0198159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fehr, W., & Caviness, C. (1977). Stages of soybean development. Iowa Coop. Ext. Service, Iowa Agric. Home. Exp. Stn. Spec. Rep. Special Report 80.

  • Feng, L. Y., Raza, M. A., Chen, Y., Khalid, M. H. B., Meraj, T. A., Ahsan, F., Fan, Y., Du, J., Wu, X., & Song, C. (2019). Narrow-wide row planting pattern improves the light environment and seed yields of intercrop species in relay intercrop** system. PLoS One, 14, e0212885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, L. Y., Raza, M. A., Shi, J., Ansar, M., Titriku, J. K., Meraj, T. A., Shah, G. A., Ahmed, Z., Saleem, A., & Liu, W. (2020). Delayed maize leaf senescence increases the land equivalent ratio of maize soybean relay intercrop** system. European Journal of Agronomy, 118, 126092.

    Article  CAS  Google Scholar 

  • Gao, Y., Duan, A., Qiu, X., Sun, J., Zhang, J., Liu, H., & Wang, H. (2010). Distribution and use efficiency of photosynthetically active radiation in strip intercrop** of maize and soybean. Agronomy Journal, 102, 1149–1157.

    Article  Google Scholar 

  • Haile, F. J., Higley, L. G., Specht, J. E., & Spomer, S. M. (1998). Soybean leaf morphology and defoliation tolerance. Agronomy Journal, 90, 353–362.

    Article  Google Scholar 

  • Haq, M., & Pandey, R. (1979). Transport and utilization of 14 C photosynthate in cowpea (Vigna uniquiculata). Journal of Nuclear Agriculture and Biology, 8, 85–88.

    CAS  Google Scholar 

  • Heindl, J. C., & Brun, W. A. (1983). Light and shade effects on abscission and 14C-photoassimilate partitioning among reproductive structures in soybean. Plant Physiology, 73, 434–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higley, L.G. (1992). New understandings of soybean defoliation and their implication for pest management, in Pest management in soybean. Springer, 56–65.

  • Hunt, K. H. (1978). Kinematic geometry of mechanisms. Oxford University Press.

    Google Scholar 

  • Iqbal, N., Hussain, S., Ahmed, Z., Yang, F., Wang, X., Liu, W., Yong, T., Du, J., Shu, K., & Yang, W. (2018). Comparative analysis of maize-soybean strip intercrop** systems. A review. Plant Production Science.

  • Islam, M. T. (2014). Effects of defoliation on photosynthesis, dry matter production and yield in soybean. Bangladesh Journal of Botany, 43, 261–265.

    Article  Google Scholar 

  • Khanna-Chopra, R., & Maheswari, M. (1998). Effect of altering source availability on expression of sink capacity in a maize hybrid and its parents. European Journal of Agronomy, 9, 101–107.

    Article  Google Scholar 

  • Klubertanz, T. H., Pedigo, L. P., & Carlson, R. E. (1996). Soybean physiology, regrowth, and senescence in response to defoliation. Agronomy Journal, 88, 577–582.

    Article  Google Scholar 

  • Liu, H. S., Hashemi, A., Litchfield, G., Zhang, Q., & Barzegar, A. (2006). Yield and yield components responses of old and new soybean cultivars to source-sink manipulation under light enrichment. Plant Soil and Environment, 52, 148.

    Google Scholar 

  • Liu, T., Gu, L., Dong, S., Zhang, J., Liu, P., & Zhao, B. (2015). Optimum leaf removal increases canopy apparent photosynthesis, 13 C-photosynthate distribution and grain yield of maize crops grown at high density. Field Crops Research, 170, 32–39.

    Article  Google Scholar 

  • Liu, X., Rahman, T., Song, C., Su, B., Yang, F., Yong, T., Wu, Y., Zhang, C., & Yang, W. (2017). Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercrop** systems. Field Crops Research, 200, 38–46.

    Article  Google Scholar 

  • Meyer, G. (1998). Pattern of defoliation and its effect on photosynthesis and growth of goldenrod. Functional Ecology, 12, 270–279.

    Article  Google Scholar 

  • Norman, A. (2012). Soybean physiology, agronomy, and utilization. Elsevier.

    Google Scholar 

  • Owen, L., Catchot, A., Musser, F., Gore, J., Cook, D., Jackson, R., & Allen, C. (2013). Impact of defoliation on yield of group IV soybeans in Mississippi. Crop Protection, 54, 206–212.

    Article  Google Scholar 

  • Pandey, P. (1983). Influence of defoliation on seed yield in cowpea [Vigna unguiculata (L.) Walp.] in a sub-tropical environment. Field Crops Research, 7, 249–256.

    Article  Google Scholar 

  • Qasim, S. A., Anjum, M. A., Hussain, S., & Ahmad, S. (2013). Effect of pea intercrop** on biological efficiencies and economics of some non-legume winter vegetables. Pakistan Journal of Agricultural Sciences, 50(3), 39–406.

    Google Scholar 

  • Qin, A., Huang, G., Chai, Q., Yu, A., & Huang, P. (2013). Grain yield and soil respiratory response to intercrop** systems on arid land. Field Crops Research, 144, 1–10.

    Article  Google Scholar 

  • Quijano, A., & Morandi, E. N. (2011). Post-flowering leaflet removals increase pod initiation in soybean canopies. Field Crops Research, 120, 151–160.

    Article  Google Scholar 

  • Rahman, T., Liu, X., Hussain, S., Ahmed, S., Chen, G., Yang, F., Chen, L., Du, J., Liu, W., & Yang, W. (2017). Water use efficiency and evapotranspiration in maize-soybean relay strip intercrop systems as affected by planting geometries. PLoS One, 12, e0178332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raza, M. A., Feng, L. Y., Iqbal, N., Ahmed, M., Chen, Y. K., Khalid, M. H. B., Din, A. M. U., Khan, A., Ijaz, W., & Hussain, A. (2019a). Growth and development of soybean under changing light environments in relay intercrop** system. PeerJ, 7, e7262.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raza, M. A., Feng, L. Y., Wopke, V. D. W., Iqbal, N., Khalid, M. H. B., Chen, Y. K., Wasaya, A., Ahmed, S., Din, A. M. U., & Khan, A. (2019b). Maize leaf-removal: A new agronomic approach to increase dry matter, flower number and seed-yield of soybean in maize soybean relay intercrop** system. Scientific Reports, 9, 1–13.

    Article  Google Scholar 

  • Raza, M. A., Feng, L. Y., Wopke, V. D. W., Iqbal, N., Khan, I., Hassan, M. J., Ansar, M., Chen, Y. K., ** system. Field Crops Research, 244, 107647.

    Article  Google Scholar 

  • Raza, M. A., Cui, L., Khan, I., Din, A. M. U., Chen, G., Ansar, M., et al. (2021a). Compact maize canopy improves radiation use efficiency and grain yield of maize/soybean relay intercrop** system. Environmental Science and Pollution Research, 28(30), 41135–41148.

    Article  PubMed  Google Scholar 

  • Raza, M. A., Gul, H., Wang, J., Yasin, H. S., Qin, R., Khalid, M. H. B., et al. (2021b). Land productivity and water use efficiency of maize soybean strip intercrop** systems in semi arid areas. Journal of Cleaner Production, 308, 127282.

    Article  Google Scholar 

  • Rotundo, J. L., Borrás, L., De Bruin, J., & Pedersen, P. (2012). Physiological strategies for seed number determination in soybean: Biomass accumulation, partitioning and seed set efficiency. Field Crops Research, 135, 58–66.

    Article  Google Scholar 

  • Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: A review. Global Change Biology, 20, 3313–3328.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., Gong, W., Wang, Y., Yong, T., Yang, F., Liu, W., Wu, X., Du, J., Shu, K., & Liu, J. (2018). Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean. Journal of Plant Research. https://doi.org/10.1007/s10265-018-1027-8

    Article  PubMed  Google Scholar 

  • Wu, Y., Gong, W., Yang, F., Wang, X., Yong, T., & Yang, W. (2016). Responses to shade and subsequent recovery of soya bean in maize-soya bean relay strip intercrop**. Plant Production Science, 19, 206–214.

    Article  CAS  Google Scholar 

  • Wu, Y., Gong, W., & Yang, W. (2017). Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Scientific Reports, 7, 9259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, C., Hu, B., Iqbal, N., Yang, F., Liu, W.-G., Wang, X.-C., Yong, T.-W., Zhang, J., Yang, W.-Y., & Liu, J. (2018). Effect of shading on accumulation of soybean isoflavonoid under maize-soybean strip intercrop** systems. Plant Production Science, 21, 193–202.

    CAS  Google Scholar 

  • Yli-Halla, M. (1997). Classification of acid sulphate soils of Finland according to Soil Taxonomy and the FAO/Unesco legend. Agricultural and Food Science, 6, 247–258.

    Article  Google Scholar 

Download references

Funding

The research was supported by the International Cooperation Project of Sichuan Province (2020YFH0126), the Program on Industrial Technology System of National Soybean (CARS-04-PS19), and the National Undergraduate Training Program for Innovation (201810626085).

Author information

Authors and Affiliations

Authors

Contributions

MAR and AH performed the experiment. MAR, HG, ZA, AS, KMK, MHBK, GH, SA, SE, AIK analyzed the data. MAR, FY, AES, RQ, and WY conceived the original research plans. MAR, HG, MA, AES, FY, WA, MJB, ZA, MUR, KMK, and WY designed the experiments and wrote the whole article. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shakeel Ahmad, Yang Feng or Wenyu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, M.A., Gul, H., Hasnain, A. et al. Leaf Area Regulates the Growth Rates and Seed Yield of Soybean (Glycine max L. Merr.) in Intercrop** System. Int. J. Plant Prod. 16, 639–652 (2022). https://doi.org/10.1007/s42106-022-00201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-022-00201-8

Keywords

Navigation