Log in

Continuous morphology-controllable precipitation strategy for europium oxalate hydrates via microchannel reactor

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

A flow chemistry based continuous morphology-controllable precipitation strategy was successfully developed for synthesis of europium oxalate hydrate microparticles. The effects of flow ratio between raw materials within microchannels on the crystal structure, morphology and particle size distribution of the precipitated products were firstly studied. The results shown that both high yield and controllable morphology were achieved for Eu3+ precipitation reactions under its low concentration condition. The effects of supersaturation, mixing intensity, and reaction temperatures were also investigated in detail, which proved the continuous preparation of layered microparticles with concentrated size distribution can be achieved by this strategy. Multiple characterizations and comparison experiment synergistically reveal that the feed flow ratios of nitric acid and oxalic acid determines the morphology and particle size distribution due to affecting the mixing degree and phase composition of the precipitation reaction. In addition, the phase and morphology conversion of precipitates after calcination treatment were also studied, the as-calcined metal oxide powder exhibited a decent photoluminescence characteristic. In summary, this work demonstrates a promising precipitation strategy within micro-channels for mass controllable production of high-quality metal oxide materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abraham F, Arab-Chapelet B, Rivenet M, Tamain C, Grandjean S (2014) Actinide oxalates, solid state structures and applications. Coord Chem Rev 266-267:28–68

    Article  CAS  Google Scholar 

  2. Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22

    Article  CAS  Google Scholar 

  3. Rodríguez-Ruiz I, Teychené S, Vitry Y, Biscans B, Charton S (2018) Thermodynamic modeling of neodymium and cerium oxalates reactive precipitation in concentrated nitric acid media. Chem Eng Sci 183:20–25

    Article  Google Scholar 

  4. Arab-Chapelet B, Grandjean S, Nowogrocki G, Abraham F (2007) Synthesis of new mixed actinides oxalates as precursors of actinides oxide solid solutions. J Alloys Compd 444-445:387–390

    Article  CAS  Google Scholar 

  5. Ellart M, Blanchard F, Rivenet M, Abraham F (2020) Structural variations of 2D and 3D lanthanide oxalate frameworks hydrothermally synthesized in the presence of Hydrazinium ions. Inorg Chem 59:491–504

    Article  CAS  PubMed  Google Scholar 

  6. Modolo G, Vijgen H, Serrano-Purroy D, Christiansen B, Malmbeck R, Sorel C, Baron P (2007) DIAMEX counter-current extraction process for recovery of trivalent actinides from simulated high active concentrate. Sep Sci Technol 42:439–452

    Article  CAS  Google Scholar 

  7. Kumari A, Jha MK, Pathak DD, Chakravarty S, Lee J-C (2019) Processes developed for the separation of europium (Eu) from various resources. Sep Purif Rev 48:91–121

    Article  CAS  Google Scholar 

  8. Wang J, Li H, Tang L, Zhong C, Liu Y, Lu L, Qiu T, Liu H (2020) Behavior and mechanism of low-concentration rare earth ions precipitated by the microbial humic-like acids. Environ Sci Pollut Res Int 27:21965–21976

    Article  CAS  PubMed  Google Scholar 

  9. Luo J, Wang C, Lan J, Wu Q, Zhao Y, Chai Z, Nie C, Shi W (2016) Theoretical studies on the complexation of Eu(III) and am(III) with HDEHP: structure, bonding nature and stability. Sci China Chem 59:324–331

    Article  CAS  Google Scholar 

  10. Usuda S, Yamanishi K, Mimura H, Sasaki Y, Kirishima A, Sato N, Niibori Y (2013) Chromatographic Separation Behaviors of Am, Cm, and Eu onto TODGA and DOODA(C8) Adsorbents with Hydrophilic Ligand–Nitric Acid Eluents. Chem Lett 42:1220–1222

    Article  CAS  Google Scholar 

  11. Chowta S, Mohapatra PK, Tripathi SC, Tomar BS, Manchanda VK (2010) Recovery and pre-concentration of americium (III) from dilute acid solutions using an emulsion liquid membrane containing di-2-ethylhexyl phosphoric acid (D2EHPA) as extractant. J Radioanal Nucl Chem 285:309–314

    Article  CAS  Google Scholar 

  12. Rao VK, Pius IC, Subbarao M, Chinnusamy A, Natarajan PR (1986) Precipitation of plutonium oxalate from homogeneous solutions. J Radioanal Nucl Chem 100:129–134

    Article  CAS  Google Scholar 

  13. Tamain C, Arab-Chapelet B, Rivenet M, Grandjean S, Abraham F (2016) Crystal growth methods dedicated to low solubility actinide oxalates. J Solid State Chem 236:246–256

    Article  CAS  Google Scholar 

  14. Güzel Y, Rainer M, Mirza MR, Bonn GK (2012) Highly efficient precipitation of phosphoproteins using trivalent europium, terbium, and erbium ions. Anal Bioanal Chem 403:1323–1331

    Article  PubMed  Google Scholar 

  15. Amari S, Sugawara C, Kudo S, Takiyama H (2022) Investigation of operation strategy based on solution pH for improving the crystal quality formed during reactive crystallization of l-aspartic acid. ACS Omega 7:2989–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bowen P, Pujol O, Jongen N, Lemaître J, Fink A, Stadleman P, Hofmann H (2010) Control of morphology and nanostructure of copper and cobalt oxalates: effect of complexing ions, polymeric additives and molecular weight. Nanoscale 2:2470–2477

    Article  CAS  PubMed  Google Scholar 

  17. Harsányi EG, Tóth K, Pungor E (1984) The behaviour of the silver sulphide precipitate-based ion-selective electrode in the low concentration range. Anal Chim Acta 161:333–341

    Article  Google Scholar 

  18. Mersmann A (1999) Crystallization and precipitation. Chem Eng Process Process Intensif 38:345–353

    Article  CAS  Google Scholar 

  19. Bashar A, Townshend A (1966) A comparative study of methods for precipitating calcium oxalate from homogeneous solution. Talanta 13:1123–1128

    Article  CAS  PubMed  Google Scholar 

  20. Misyura SY (2018) Evaporation and heat transfer of aqueous salt solutions during crystallization. Appl Therm Eng 139:203–212

    Article  CAS  Google Scholar 

  21. Lee X (2018) Energy balance, evaporation, and surface temperature. In: Fundamentals of boundary-layer meteorology. Springer, pp 191–213

  22. Huang CJ, Liu JC (1999) Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer. Water Res 33:3403–3412

    Article  CAS  Google Scholar 

  23. Cheng K-P, Wu B, Gu R-J, Wen L-X (2018) Micromixing study of a clustered countercurrent-flow micro-channel reactor and its application in the precipitation of ultrafine manganese dioxide. Micromachines 9:549

  24. Ouyang Y, **ang Y, Zou H, Chu G, Chen J (2017) Flow characteristics and micromixing modeling in a microporous tube-in-tube microchannel reactor by CFD. Chem Eng J 321:533–545

    Article  CAS  Google Scholar 

  25. Wang J, Zhang F, Wang Y, Luo G, Cai W (2016) A size-controllable preparation method for indium tin oxide particles using a membrane dispersion micromixer. Chem Eng J 293:1–8

    Article  CAS  Google Scholar 

  26. Ling FWM, Abdulbari HA, Sim-Yee C (2021) Effect of residence time on the morphology of silica nanoparticles synthesized in a microfluidic reactor. J Flow Chem 12:17–30

    Article  Google Scholar 

  27. Alemayehu A, Zakharanka A, Tyrpekl V (2022) Homogeneous precipitation of lanthanide oxalates. ACS Omega 7:12288–12295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trollet D, Roméro S, Mosset A, Trombe J-C (1997) Synthèse et structure d’un oxalate de gadolinium ne contenant pas de molécule d’eau libre, [Gd(H2O)3]2(C2O4)3. Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy 325:663–670

    Article  CAS  Google Scholar 

  29. Frost RL (2004) Raman spectroscopy of natural oxalates. Anal Chim Acta 517:207–214

    Article  CAS  Google Scholar 

  30. Nakamoto K (2008) Applications in coordination chemistry. In: Infrared and raman spectra of inorganic and coordination compounds. Wiley, pp 1–273

  31. Zhu Q, Wang X, Li J-G (2017) Recent progress in layered rare-earth hydroxide (LRH) and its application in luminescence. J Adv Ceram 6:177–186

    Article  CAS  Google Scholar 

  32. Zhang C, Lin J (2012) Defect-related luminescent materials: synthesis, emission properties and applications. Chem Soc Rev 41:7938–7961

    Article  CAS  PubMed  Google Scholar 

  33. Vimal G, Mani KP, Biju PR, Joseph C, Unnikrishnan NV, Ittyachen MA (2015) Synthesis and spectroscopic investigation of nanostructured europium oxalate: a potential red emitting phosphor. Solid State Sci 48:112–119

    Article  CAS  Google Scholar 

  34. Soltis JA, Isley WC, Conroy M, Kathmann SM, Buck EC, Lumetta GJ (2018) In situ microscopy across scales for the characterization of crystal growth mechanisms: the case of europium oxalate. CrystEngComm 20:2822–2833

    Article  CAS  Google Scholar 

  35. Gribov P, Sidelnikov A, Matvienko A (2020) The effect of defects on structural transformation during dehydration of europium oxalate decahydrate. Mater Today Proceed 25:467–469

    Article  CAS  Google Scholar 

  36. Yao H, Wang Y, Luo G (2017) A size-controllable precipitation method to prepare CeO2 nanoparticles in a membrane dispersion microreactor. Ind Eng Chem Res 56:4993–4999

    Article  CAS  Google Scholar 

  37. Lamer VK, Dinegar RH (1950) Theory, Production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  38. Su TT, Zhai YC, Jiang H, Gong H (2009) Studies on the thermal decomposition kinetics and mechanism of ammonium niobium oxalate. J Therm Anal Calorim 98:449–455

    Article  CAS  Google Scholar 

  39. Vargas B, Reyes-Castillo DT, Coutino-Gonzalez E, Sánchez-Aké C, Ramos C, Falcony C, Solis-Ibarra D (2020) Enhanced luminescence and mechanistic studies on layered double-perovskite phosphors: Cs4Cd1–xMnxBi2Cl12. Chem Mater 32:9307–9315

    Article  CAS  Google Scholar 

  40. Terebilenko KV, Chornii VP, Zozulia VO (2022) I.a. Gural'skiy, S.G. Shova, S.G. Nedilko, M.S. Slobodyanik, crystal growth, layered structure and luminescence properties of K(2)Eu(PO(4))(WO(4)). RSC Adv 12:8901–8907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tsai PC, Huang HC, Huang CW, Chang SJ, Lin SY (2020) Luminescence enhancement and dual-color emission of stacked mono-layer 2D materials. Nanotechnol 31:365702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the Foundation for Innovation Groups of Basic Research in Gansu Province (No. 22ZD6GB020), Distinguished Young Scholars Foundation of China National Nuclear Corporation (No. 2021-76). National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, and Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keyu Tao or Yefan Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Highlights

• A flow ratio regulation approach for producing metal oxalate precipitates based on microchannel reactors has been proposed.

• Europium oxalate hydrates of layered structure with narrow size distribution are controllably obtained.

• The optimized sample provided excellent thermal stability of structure and decent fluorescence property.

Supplementary Information

ESM 1

(DOCX 784 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, K., Li, H., Cheng, J. et al. Continuous morphology-controllable precipitation strategy for europium oxalate hydrates via microchannel reactor. J Flow Chem 13, 347–357 (2023). https://doi.org/10.1007/s41981-023-00277-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-023-00277-x

Keywords

Navigation