Log in

A tri-fluid tortuous microfluidic chip for green synthesis of nanoparticles and inactivation of a model gram-negative bacteria: Intracellular components evaluation

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

The development of green synthesis route using plant extract as a simple, cost-effective, and eco-friendly method for the synthesis of nanoparticles has become a major focus of researchers in recent years. In the present study, a novel continuous tri-fluid tortuous microfluidic chip (CTTM) was constructed to induce simultaneous mixing, Dean vortices, tortuosity, and repetitive bending in fluid behavior in order to plant-mediated synthesis of zinc selenide (ZnSe) nanoparticles. Additionally, the anti-pathogenic activity of nanoparticles against a human pathogen (E. coli) through the disruption of the cell membrane and the evaluation of the subsequent flow of cellular components such as continuous leakages of K+, nucleic acid, and intracellular protein was examined using the proposed chip. According to the results, by changing the flow rates up to 1.50 mL/min, nanoparticles with narrow size distribution were obtained. It was found that the nanoparticles sterilization effect in the case of α (Vnanoparticles/Vbacteria strain) =2 was obviously better than α = 0.5 under similar concentration and culture conditions. In this case, when the residence time and nanoparticle concentration tended to the maximum values, the release of intracellular components increased. Light microscopy and SEM clearly confirmed the ability of the antibacterial effects of nanoparticles to disrupt the bacteria membrane. Moreover, the inhibitory activity of the fabricated nanoparticles through a protein denaturation test using human serum albumin (HSA) showed an acceptable ability to inhibit protein denaturation compared to the inhibition of diclofenac sodium as a standard anti-inflammatory drug at the same concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Achouri F et al (2018). ZnO nanorods with high photocatalytic and antibacterial activity under solar light irradiation Materials 11:2158. https://doi.org/10.3390/ma11112158

    Article  CAS  Google Scholar 

  2. Ahmed H, Ramesan S, Lee L, Rezk AR, Yeo LY (2020). On-Chip Generation of Vortical Flows for Microfluidic Centrifugation Small 16:1903605. https://doi.org/10.1002/smll.201903605

    Article  CAS  Google Scholar 

  3. Alvand ZM, Rajabi HR, Mirzaei A, Masoumiasl A, Sadatfaraji H (2019) Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: synthesis, characterization, biological potentials and comparison study. Mater Sci Eng: C 98:535–544. https://doi.org/10.1016/j.msec.2019.01.010

    Article  CAS  Google Scholar 

  4. Bosman AW, Heumann A, Klaerner G, Benoit D, Fréchet JM, Hawker CJ (2001) High-throughput synthesis of nanoscale materials: Structural optimization of functionalized one-step star polymers. J Am Chem Soc 123:6461–6462. https://doi.org/10.1021/ja010405z

    Article  CAS  PubMed  Google Scholar 

  5. Bown P (2006) Advantages and disadvantages of batch farrowing in practice 28:94-96 https://doi.org/10.1136/inpract.28.2.94

  6. Chen S-N et al (2011) Phytoconstituents from Vitex agnus-castus fruits. Fitoterapia 82:528–533. https://doi.org/10.1016/j.fitote.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  7. Daniele C, Coon JT, Pittler MH, Ernst E (2005) Vitex agnus castus. Drug Safety 28:319–332. https://doi.org/10.2165/00002018-200528040-00004

    Article  PubMed  Google Scholar 

  8. Demello AJ (2006) Control and detection of chemical reactions in microfluidic. Syst Nat 442:394–402. https://doi.org/10.1038/nature05062

    Article  CAS  Google Scholar 

  9. Epstein W (2003) The roles and regulation of potassium in bacteria Progress in nucleic acid research and molecular. Biology 75:293. https://doi.org/10.1016/s0079-6603(03)75008-9

    Article  CAS  Google Scholar 

  10. Feng X, Ren Y, Hou L, Tao Y, Jiang T, Li W, Jiang H (2019) Tri-fluid mixing in a microchannel for nanoparticle synthesis. Lab on a Chip 19:2936–2946. https://doi.org/10.1039/C9LC00425D

    Article  CAS  PubMed  Google Scholar 

  11. Ganguly P, Byrne C, Breen A, Pillai SC (2018) Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances. Appl Catal B: Environ 225:51–75. https://doi.org/10.1016/j.apcatb.2017.11.018

    Article  CAS  Google Scholar 

  12. Haghighinia A, Movahedirad S (2019) Fluid micro-mixing in a passive microchannel: comparison of 2D and 3D numerical simulations. Int J Heat Mass Transfer 139:907–916. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.084

    Article  Google Scholar 

  13. Haghighinia A, Movahedirad S (2020) Mass transfer in a novel passive micro-mixer: Flow tortuosity effects. Anal Chim Acta 1098:75–85. https://doi.org/10.1016/j.aca.2019.11.028

    Article  CAS  PubMed  Google Scholar 

  14. Haghighinia A, Movahedirad S (2021) Experimental investigation and CFD simulation of cavity flow effects on liquids mixing in vortex-based microfluidic chips: Quantitative visualization and optimization by response surface method (RSM). Braz J Chem Eng 38:297–313. https://doi.org/10.1007/s43153-021-00109-2

    Article  CAS  Google Scholar 

  15. Haghighinia A, Movahedirad S, Azad BKD (2022) Laminar Fluid Mixing in Micromixers: Description of Pull-Push Effects. Chem Eng Technol 45:67–72. https://doi.org/10.1002/ceat.202100193

    Article  CAS  Google Scholar 

  16. Haghighinia A, Movahedirad S, Rezaei AK, Mostoufi N (2020) On-chip mixing of liquids with high-performance embedded barrier structure. Int J Heat Mass Transfer 158:119967. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119967

    Article  CAS  Google Scholar 

  17. Haghighinia A, Tabatabaei SM, Movahedirad S (2021) A novel geometrically-hybrid microchannel for performance enhancement in mass transfer: Description of Lyapunov exponent and Poincaré map. Int J Heat Mass Transfer 165:120700. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120700

    Article  CAS  Google Scholar 

  18. Hardt S, Drese K, Hessel V, Schönfeld F (2004) Passive micro mixers for applications in the micro reactor and μTAS field. In: International Conference on Nanochannels, Microchannels, and Minichannels, pp 45–55 https://doi.org/10.1115/ICMM2004-2319

  19. Hartman RL (2012) Managing solids in microreactors for the upstream continuous processing of fine chemicals. Org Process Res Dev 16:870–887. https://doi.org/10.1021/op200348t

    Article  CAS  Google Scholar 

  20. Hessel V, Löwe H, Schönfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60:2479–2501. https://doi.org/10.1016/j.ces.2004.11.033

    Article  CAS  Google Scholar 

  21. Hung L-H, Lee AP (2007) Microfluidic devices for the synthesis of nanoparticles and biomaterials. J Med Biol Eng 27:1. https://doi.org/10.1088/2632-959X/abcca6

    Article  Google Scholar 

  22. Ishida T (2018) Antibacterial mechanism of Ag+ ions for bacteriolyses of bacterial cell walls via peptidoglycan autolysins, and DNA damages. MOJ Toxicol 4:345–350. https://doi.org/10.15406/mojt.2018.04.00125

    Article  Google Scholar 

  23. Kar B, Kumar RS, Karmakar I, Dola N, Bala A, Mazumder UK, Hadar PK (2012) Antioxidant and in vitro anti-inflammatory activities of Mimusops elengi leaves. Asian Pacific J Tropic Biomed 2:S976–S980. https://doi.org/10.1016/S2221-1691(12)60346-3

    Article  Google Scholar 

  24. Krishna KS, Li Y, Li S, Kumar CS (2013) Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Adv Drug Deliv Rev 65:1470–1495. https://doi.org/10.1016/j.addr.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  25. Kumar DR, Prasad B, Kulkarni A (2012) Segmented flow synthesis of Ag nanoparticles in spiral microreactor: Role of continuous and dispersed phase. Chem Eng J 192:357–368. https://doi.org/10.1016/j.cej.2012.02.084

    Article  CAS  Google Scholar 

  26. Kumar V, Vashisth S, Hoarau Y, Nigam K (2007) Slug flow in curved microreactors: hydrodynamic study. Chem Eng Sci 62:7494–7504. https://doi.org/10.1016/j.ces.2007.06.026

    Article  CAS  Google Scholar 

  27. Kwon B-H, Kim H, Kim Y, Kang D, Jeon DY (2013) Synthesis of ZnSe quantum dots using a continuous-flow microreactor and their white emission through energy transfer. ECS Solid State Lett 2:R27. https://doi.org/10.1149/2.005308ssl

    Article  CAS  Google Scholar 

  28. Kwon BH, Lee KG, Park TJ, Kim H, Lee TJ, Lee SJ, Jeon DY (2012) Continuous in situ synthesis of ZnSe/ZnS core/shell quantum dots in a microfluidic reaction system and its application for light-emitting diodes. Small 8:3257–3262. https://doi.org/10.1002/smll.201200773

    Article  CAS  PubMed  Google Scholar 

  29. Li G, Pu X, Shang M, Zha L, Su Y (2019) Intensification of liquid–liquid two-phase mass transfer in a capillary microreactor system. AIChE J 65:334–346. https://doi.org/10.1002/aic.16211

    Article  CAS  Google Scholar 

  30. Lin C-H, Lee G-B, Lin Y-H, Chang G-L (2001) A fast prototy** process for fabrication of microfluidic systems on soda-lime glass. J Micromech Microeng 11:726. https://doi.org/10.1088/0960-1317/11/6/316

    Article  CAS  Google Scholar 

  31. Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39:1183–1202. https://doi.org/10.1039/B821324K

    Article  CAS  PubMed  Google Scholar 

  32. Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G (2018) Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11:940. https://doi.org/10.3390/ma11060940

    Article  CAS  PubMed Central  Google Scholar 

  33. Mogensen KB, Klank H, Kutter JP (2004) Recent developments in detection for microfluidic systems. Electrophoresis 25:3498–3512. https://doi.org/10.1002/elps.200406108

    Article  CAS  PubMed  Google Scholar 

  34. Moghimi R, Ghaderi L, Rafati H, Aliahmadi A, McClements DJ (2016) Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem 194:410–415. https://doi.org/10.1016/j.foodchem.2015.07.139

    Article  CAS  PubMed  Google Scholar 

  35. Nasab NK, Dehnad AR, Salimizand H, Taherzadeh D, Prakash D, Verma K, Darroudi M (2016) Zinc selenide nanoparticles (ZnSe-NPs): green synthesis and investigation of their cytotoxicity effects. Ceram Int 42:12115–12118. https://doi.org/10.1016/j.ceramint.2016.04.143

    Article  CAS  Google Scholar 

  36. Nightingale AM, de Mello JC (2010) Microscale synthesis of quantum dots. J Mater Chem 20:8454–8463. https://doi.org/10.1039/C0JM01221A

    Article  CAS  Google Scholar 

  37. Phillips TW, Lignos IG, Maceiczyk RM, deMello AJ, deMello JC (2014) Nanocrystal synthesis in microfluidic reactors: where next? Lab Chip 14:3172–3180. https://doi.org/10.1039/C4LC00429A

    Article  CAS  PubMed  Google Scholar 

  38. Rajabi H, Alvand ZM, Mirzaei A, Sajadiasl F (2021) Preparation of low-toxic cadmium selenide nanoparticles using the plant extract: a comparative study on the extraction techniques, characterization. Biol Potentials. https://doi.org/10.21203/rs.3.rs-191407/v1

  39. Rajabi HR, Naghiha R, Kheirizadeh M, Sadatfaraji H, Mirzaei A, Alvand ZM (2017) Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: synthesis, characterization, and biological properties. Mater Sci Eng: C 78:1109–1118. https://doi.org/10.1016/j.msec.2017.03.090

    Article  CAS  Google Scholar 

  40. Salem A, Saion E, Al-Hada NM, Kamari HM, Shaari AH, Radiman S (2017) Simple synthesis of ZnSe nanoparticles by thermal treatment and their characterization. Results Phys 7:1175–1180. https://doi.org/10.1016/j.rinp.2017.03.011

    Article  Google Scholar 

  41. Sequeira RC, Criswell T, Atala A, Yoo JJ (2020) Microfluidic systems for assisted reproductive technologies: advantages and potential applications tissue. Eng Regen Medicine:1–14. https://doi.org/10.1007/s13770-020-00311-2

  42. Song Y, Hormes J, Kumar CS (2008) Microfluidic synthesis of nanomaterials small 4:698–711. https://doi.org/10.1002/smll.200701029

  43. Stavinskaya O, Laguta I, Fesenko T, Krumova M (2019) Effect of temperature on green synthesis of silver nanoparticles using Vitex agnus-castus extract. Chem J Moldova 14:117–121. https://doi.org/10.19261/cjm.2019.636

    Article  CAS  Google Scholar 

  44. Taylor AM, Jeon NL (2010) Micro-scale and microfluidic devices for neurobiology. Curr Opin Neurobiol 20:640–647. https://doi.org/10.1016/j.conb.2010.07.011

    Article  CAS  PubMed  Google Scholar 

  45. Terazaki T, Nomura M, Takeyama K, Nakamura O, Yamamoto T (2005) Development of multi-layered microreactor with methanol reformer for small PEMFC. J Power Sources 145:691–696. https://doi.org/10.1016/j.jpowsour.2005.02.065

    Article  CAS  Google Scholar 

  46. Valentinčič J, Glojek A, Sabotin I (2016) Design, Simulation, and Injection Moulding of a Microreactor Baseplate. J Micro Nano-Manuf 4. https://doi.org/10.1115/1.4033710

  47. Yang C-G, Xu Z-R, Wang J-H (2010) Manipulation of droplets in microfluidic systems. TrAC Trends Anal Chem 29:141–157. https://doi.org/10.1016/j.trac.2009.11.002

    Article  CAS  Google Scholar 

  48. Yang H, Fan N, Luan W, Tu S-t (2009) Synthesis of monodisperse nanocrystals via microreaction: open-to-air synthesis with oleylamine as a coligand. Nanoscale Res Lett 4:344. https://doi.org/10.1007/s11671-009-9251-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao S, Dong Z, Yao C, Wen Z, Chen G, Yuan Q (2018) Liquid–liquid two-phase flow in ultrasonic microreactors: cavitation, emulsification, and mass transfer enhancement. AIChE J 64:1412–1423. https://doi.org/10.1002/aic.16010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Movahedirad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighinia, A., Movahedirad, S. A tri-fluid tortuous microfluidic chip for green synthesis of nanoparticles and inactivation of a model gram-negative bacteria: Intracellular components evaluation. J Flow Chem 12, 337–352 (2022). https://doi.org/10.1007/s41981-022-00238-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-022-00238-w

Keywords

Navigation