Log in

Recent advancements in 3D printing for gear design and analysis: a comprehensive review

  • Review
  • Published:
Multiscale and Multidisciplinary Modeling, Experiments and Design Aims and scope Submit manuscript

Abstract

This comprehensive review paper delves into the analysis of 3D printed spur gears, with a keen focus on their design, material selection, manufacturing processes, and assessment of contact strength. With the rising adoption of additive manufacturing, there's a growing interest in its suitability for gear production. The paper examines various facets, encompassing tailored design considerations for 3D printed spur gears, along with analytical, numerical, and experimental methodologies employed for evaluating contact stress, tooth bending strength, and impact resistance. Furthermore, it provides an overview of different 3D printing techniques pertinent to gear manufacturing. The study underscores the significance of optimizing gear design parameters to ensure adequate contact strength and reliable performance. Notably, the review reveals widespread usage of Solidworks for modeling, ANSYS for numerical analysis, and PLA as the predominant material choice for 3D printing, particularly employing the fused filament fabrication (FFF) method. By consolidating current knowledge, this article offers valuable insights into the realm of 3D printed spur gears while delineating avenues for future research in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Data availability

No data was used for the research in this article.

References

  • Abdulla KA, Ezdeen SY, Alfons AMS (2021) Minimum weight optimization of materials and high strength for spur gear design. Int J Mech Prod Eng Res Dev (IJMPERD) 11(4):305–318

    Google Scholar 

  • Abhang LB, Dekhane AG (2018) Use of polylactic acid (PLA) material for asymmetric spur gear manufactured by 3-D printing. In: Advanced manufacturing and materials science: selected extended papers of ICAMMS 2018. Springer International Publishing, pp 103–113

  • AGMA. https://www.agma.org/standards-technology/

  • Al-Qrimli HFA, Almurib HA, Kumar N, Mahdi FA (2015) Dynamic analysis of a straight bevel gear composite structure. J Mater Sci Eng 4(1):1000152

    Google Scholar 

  • Al-Qrimli HFA, Abdelrhman AM, Hadi HM, Mohammed RK, Sultan HS (2016) Times three-dimensional spur gear static contact investigations using FEM. Mod Appl Sci 10(5):145–150

    Article  Google Scholar 

  • Apparao D, Jagannadha Raju MV (2021) Design and analysis of spur gear manufactured by DMLS process. Mater Today Proc 46:149–153

    Article  Google Scholar 

  • Araya-Calvo M, López-Gómez I, Chamberlain-SimonN L-S, Guillén-Girón T, Corrales-Cordero JS, Sánchez-Brenes O (2018) Evaluation of compressive and flexural properties of continuous fibre fabrication additive manufacturing technology. Addit Manuf 22:157–164

    Google Scholar 

  • Bakshe BN, Patil SR (2018) Contact stress analysis of steel and composite spur gear pairs. Int J Adv Technol Eng Explor 5(45):262–268

    Article  Google Scholar 

  • Bayas E, Kumar P, Harne M (2023) Impact of process parameters on mechanical properties of FDM 3D-printed parts: a comprehensive review. Eur Chem Bull 12:708–725

    Google Scholar 

  • Beaman JJ, Bourell DL, Seepersad CC, Kovar D (2020) Additive manufacturing review: early past to current practice. ASME J Manuf Sci Eng 142(11):110812. https://doi.org/10.1115/1.4048193

    Article  Google Scholar 

  • Besnea D, Rizescu C, Moraru E, Dinu E, Panait I (2019) Comparative study regarding the wear of gearwheels manufactured through additive technologies. MATEC Web Conf 290:08001

    Article  Google Scholar 

  • Bourell D, Kruth JP, Leu M, Levy G, Rosen D, Beese AM, Clare A (2017) Materials for additive manufacturing. CIRP Ann 66(2):659–681

    Article  Google Scholar 

  • Buj-Corral I, Zayas-Figueras EE (2023) Comparative study about dimensional accuracy and form errors of FFF printed spur gears using PLA and Nylon. Polym Testing 117:107862

    Article  Google Scholar 

  • Caminero MA, Rodríguez GP, Muñoz V (2016) Effect of stacking sequence on Charpy impact and flexural damage behaviour of composite laminates. Compos Struct 136:345–357

    Article  Google Scholar 

  • Can Y, Misirli C (2008) Analysis of spur gear forms with tapered tooth profile. Mater Des 29(4):829–838

    Article  Google Scholar 

  • Chacón JM, Caminero MA, García-Plaza E, Núnez PJ (2017) Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater Des 124:143–157

    Article  Google Scholar 

  • Chacón JM, Caminero MA, Núñez PJ, García-Plaza E, García-Moreno I, Reverte JM (2019) Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties. Compos Sci Technol 181:107688

    Article  Google Scholar 

  • Chhabra P, Bhatia A (2015) Design & analysis of composite material gear box. Int J Mech Sci Civ Eng 1:15–25

    Google Scholar 

  • Christ JF, Aliheidari N, Ameli A, Pötschke P (2017) 3DP highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Mater Des 131:394–401

    Article  Google Scholar 

  • Czink S, Lubkowitz V, Dietrich S, Schulze V (2023) Process development for the hybrid additive manufacturing of metallic structures on polymer substrates. Addit Manuf Lett 6:100132. https://doi.org/10.1016/j.addlet.2023.100132

    Article  Google Scholar 

  • Mahadevan KBRK, Balaveera Reddy K (1984) Design data hand book: for mechanical engineers. CBS Publishers & Distributors

    Google Scholar 

  • Designation: D 3039/D 3039M – 00e1 standard test method for tensile properties of polymer matrix composite materials

  • Dewanji P (2016) Design and analysis of spur gear. Int J Mech Eng Technol (IJMET) 7(5):209–220

    Google Scholar 

  • Dickson AN, Barry JN, McDonnell KA, Dowling DP (2017) Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit Manuf 16:146–152

    Google Scholar 

  • Dimić A, Mišković Ž, Mitrović R, Ristivojević M, Stamenić Z, Danko J, Bucha J, Milesich T (2018) The influence of material on the operational characteristics of spur gears manufactured by the 3DPtechnology. Strojnícky Časopis-J Mech Eng 68(3):261–270

    Article  Google Scholar 

  • Dong G, Tang Y, Li D, Zhao YF (2018) Mechanical properties of continuous kevlar fibre reinforced composites fabricated by fused filament fabrication process. Procedia Manuf 26:774–781

    Article  Google Scholar 

  • Dooner DB (2001) Design formulas for evaluating contact stress in genralized gear pairs. Gear Technology. www.powertransmission.com. www.geartechnology.com

  • Ergene B, Bolat Ç (2022) An experimental investigation on the effect of test speed on the tensile properties of the petg produced by additive manufacturing. Int J 3D Print Technol Digit Ind 6(2):250–260

    Google Scholar 

  • Ergene B, Yalçın B (2023) Investigation on mechanical performances of various cellular structures produced with fused deposition modeling (FDM). J Fac Eng Archit Gazi Univ 38(1):201–217

    Google Scholar 

  • Farhan M, Karuppanan S, Patil SS (2015) Frictional contact stress analysis of spur gear by using FEM. Appl Mech Mater 772:159–163

    Article  Google Scholar 

  • Gbadeyan OJ, Mohan TP, Kanny K (2020) Processing and characterization of 3D-printed nanoclay/acrylonitrile butadiene styrene (ABS) nanocomposite gear. Int J Adv Manuf Technol 109:619–627

    Article  Google Scholar 

  • Goh GD, Yap YL, Agarwala S, Yeong WY (2019) Recent progress in additive manufacturing of fibre reinforced polymer composite. Adv Mater Technol 4(1):1800271

    Article  Google Scholar 

  • Guo A, Liu C, Li S, Zhou X, Wang J, Wang S, Qu P, Hu Y (2022) Water absorption rates and mechanical properties of material extrusion-printed continuous carbon fibre-reinforced nylon composites. J Market Res 21:3098–3112

    Google Scholar 

  • Gupta B, Choubey A, Varde GV (2012) Contact stress analysis of spur gear. Int J Eng Res Technol 1(4):1–7

    Google Scholar 

  • Handrik M, Vaško M, Majko J, Sága M, Dorčiak F (2019) Influence of the shape of the test specimen produced by 3DPon the stress distribution in the matrix and long reinforcing fibres. Strojnícky Časopis-J Mech Eng 69(3):61–68

    Article  Google Scholar 

  • Harsha KM, Seetharama Rao Y (2021) Comparison of wear behaviourof polymer spur gears using FFF process. IOP Conf Ser Mater Sci Eng 1168(1):012028

    Article  Google Scholar 

  • Hiung FZ, Al-Qrimli HF, Morris KI (2017) Implementation of XFEM in the study of gear crack propagation behaviourusing the SIF on different moments. Int J Simul Process Model 12(3–4):362–368

    Article  Google Scholar 

  • https://static.markforged.com/downloads/composites-data-sheet.pdf

  • Hwang S-C, Lee J-H, Lee D-H, Han S-H, Lee K-H (2013) Contact stress analysis for a pair of mating gears. Math Comput Model 57(1–2):40–49

    Article  MathSciNet  Google Scholar 

  • Jadhav VS, Wankhade SR (2017) Design and manufacturing of spur gear using fused deposition modelling. IRJET 4:1217–1224

    Google Scholar 

  • Jebur AK, Khan IA, Nath Y (2011) Numerical and experimental dynamic contact of rotating spur gear. Mod Appl Sci 5(2):254

    Article  Google Scholar 

  • Jelaska DT (2012) Gears and gear drives. Wiley, Hoboken

    Book  Google Scholar 

  • Joshi S, Kulkarni R, Joshi A, Joshi S, Dhatrak P (2021) Design of helical gear with carbon reinforced EN36 steel for two stage constant mesh gearbox weight reduction. Mater Today Proc 46:626–633

    Article  Google Scholar 

  • Justo J, Távara L, García-Guzmán L, París F (2018) Characterization of 3DP long fibre reinforced composites. Compos Struct 185:537–548

    Article  Google Scholar 

  • Kabir SMF, Mathur K, Seyam A-FM (2020) A critical review on 3DP continuous fibre-reinforced composites: History, mechanism, materials and properties. Compos Struct 232:111476

    Article  Google Scholar 

  • Kalay OC, Doğan O, Yılmaz TG, Yüce C, Karpat F (2021) A comparative experimental study on the impact strength of standard and asymmetric involute spur gears. Measurement 172:108950

    Article  Google Scholar 

  • Kärki O (2021) Small spur gear manufacturing study. Bachelor of Engineering, Mechanical Engineering Bachelor’s Thesis, Metropolia University of Applied Sciences. https://www.metropolia.fi/en

  • Kawalec A, Wiktor J (2004) Tooth-root stress calculation of internal spur gears. Proc Inst Mech Eng B J Eng Manuf 218(9):1153–1166

    Article  Google Scholar 

  • Kaya MŞ, Ece RE, Keles O, Qader A, Yilbas BS (2022) Effect of Post Processes on Mechanical Properties of 3D Printed Ti6Al4V Gears. J Mater Eng Perform 31(8):6300–6309

    Article  Google Scholar 

  • Kim J, Kang BS (2018) Optimization of design process of fused filament fabrication (FFF) 3D printing. In: ASME international mechanical engineering congress and exposition, vol 52019. American Society of Mechanical Engineers, p V002T02A060

  • Kotkar T, Masure P, Modake P, Lad C, Patil B (2018) Modelling and testing of spur gear made of different 3DP materials. Int JS Res Sci Eng 4:1389–1394

    Google Scholar 

  • Kuo C-C, Li D-Y, Lin Z-C, Kang Z-F (2021) Characterizations of polymer gears fabricated by differential pressure vacuum casting and fused deposition modelling. Polymers 13(23):4126

    Article  Google Scholar 

  • Lisle TJ, Shaw BA, Frazer RC (2017) External spur gear root bending stress: a comparison of ISO 6336: 2006, AGMA 2101–D04, ANSYS finite element analysis and strain gauge techniques. Mech Mach Theory 111:1–9

    Article  Google Scholar 

  • Loc NH, Anh LT (2021) Contact stress analysis and optimization of spur gears. IOP Conf Ser Mater Sci Eng 1109(1):012004

    Article  Google Scholar 

  • Love LJ, Kunc V, Rios O, Duty CE, Elliott AM, Post BK, Smith RJ, Blue CA (2014) The importance of carbon fibre to polymer additive manufacturing. J Mater Res 29(17):1893–1898

    Article  Google Scholar 

  • Mahakul R, Thatoi DN, Choudhury S, Patnaik P (2021) Design and numerical analysis of spur gear using SolidWorks simulation technique. Mater Today Proc 41:340–346

    Article  Google Scholar 

  • Mao K (2007) A new approach for polymer composite gear design. Wear 262(3–4):432–441

    Article  Google Scholar 

  • Mehta G, Somani M, Narendiranath Babu T, Watts T (2018) Contact stress analysis on composite spur gear using FEM. Mater Today Proc 5(5):13585–13592

    Article  Google Scholar 

  • Melenka GW, Cheung BKO, Schofield JS, Dawson MR, Carey JP (2016) Evaluation and prediction of the tensile properties of continuous fibre-reinforced 3DP structures. Compos Struct 153:866–875

    Article  Google Scholar 

  • Mohammeda JK, Ramadan DO (2022) Numerical and theoretical analysis of a spur gear using composite and conventional materials. Eng Technol J 40(07):996–1005

    Google Scholar 

  • Nabi SM, Ganesan N (1993) Static stress analysis of composite spur gears using 3D-finite element and cyclic symmetric approach. Compos Struct 25(1–4):541–546

    Article  Google Scholar 

  • Naikwadi SS, Lonare GM (2018) Cost optimization of helical gear of transmission system using additive manufacturing. IJSRSET 4(1):1179–1184

    Google Scholar 

  • Naresh P, Raj A, Tarun J, Rahman E, Bharat G (2019) Design and development of spur gear by using 3DP printing. Int J Trend Sci Res Dev (IJTSRD) 3(3):1044

    Google Scholar 

  • Norton RL (2014) Machine design an integrated approach, 5th edn illustrated. Prentice Hall

  • Osman T, Velex P (2012) A model for the simulation of the interactions between dynamic tooth loads and contact fatigue in spur gears. Tribol Int 46(1):84–96

    Article  Google Scholar 

  • Parandoush P, Lin D (2017) A review on additive manufacturing of polymer-fibre composites. Compos Struct 182:36–53

    Article  Google Scholar 

  • Patil S, Karuppanan S, Atanasovska I, Wahab AA (2014) Frictional tooth contact analysis along line of action of a spur gear using FEM. Procedia Mater Sci 5:1801–1809

    Article  Google Scholar 

  • Patil SS, Karuppanan S, Atanasovska I (2016) Experimental measurement of strain and stress state at the contacting helical gear pairs. Measurement 82:313–322

    Article  Google Scholar 

  • Patpatiya P, Shastri A, Sharma S, Chaudhary K, Bhatnagar V (2022) ANN-predictive modeling and GA-optimization for minimizing dimensional tolerance in polyjet additive manufacturing. CIRP J Manuf Sci Technol 38:320–339

    Article  Google Scholar 

  • Pawar PB, Utpat AA (2015) Analysis of composite material spur gear under static loading condition. Mater Today Proc 2(4–5):2968–2974

    Article  Google Scholar 

  • Pisula J, Budzik G, Turek P, Cieplak M (2021) An analysis of polymer gear wear in a spur gear train made using FFF and FFF methods based on tooth surface topography assessment. Polymers 13(10):1649

    Article  Google Scholar 

  • Pogačnik A, Tavčar J (2015) An accelerated multilevel test and design procedure for polymer gears. Mater Des (1980–2015) 65:961–973

    Article  Google Scholar 

  • Prabhakaran S, Balaji DS, Praveen Kumar R (2017) Bending stress analysis of a spur gear for material steel 15Ni2Cr1Mo28. ARPN J Eng Appl Sci 12(19):5636–5641

    Google Scholar 

  • Qin WJ, Guan CY (2014) An investigation of contact stresses and crack initiation in spur gears based on finite element dynamics analysis. Int J Mech Sci 83:96–103

    Article  Google Scholar 

  • Rahate HP, Marne RA (2016) Contact stress analysis of composite spur gear using photo-stress method and finite element analysis. Int Res J Eng Technol 3(7):540–545

    Google Scholar 

  • Rajesh N, Suresh K, Charan Theja P, Punna Rao P, Pratheep Reddy T (2019) Design and analysis of 3DP gear for automobile wind wiper. IJRTE 8(4):9302–9306

    Article  Google Scholar 

  • Ramalingam PS, Mayandi K, Balasubramanian V, Chandrasekar K, Mago Stalany V, Abdul Munaf A (2021) Effect of 3DP process parameters on the impact strength of onyx–Glass fibre reinforced composites. Mater Today Proc 45:6154–6159

    Article  Google Scholar 

  • Ristivojević M, Lazović T, Vencl A (2013) Studying the load carrying capacity of spur gear tooth flanks. Mech Mach Theory 59:125–137

    Article  Google Scholar 

  • Rizescu CI, Ciobanu RR, Rizescu D (2019) Double flank gear roll inspection of spur gears manufactured using fused deposition modelling. IOP Conf Ser Mater Sci Eng 514(1):012031

    Article  Google Scholar 

  • Rohit A, Sai Sasank G, Kishore PVRC (2020) Design and fabrication of spur gear using 3DP technology. IRJET 7:454–464

    Google Scholar 

  • Saba N, Jawaid M, Sultan MTH (2019) An overview of mechanical and physical testing of composite materials. In: Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites, pp 1–12. https://doi.org/10.1016/B978-0-08-102292-4.00001-1

  • Sankpal AM, Mirza MM (2014) Contact stress analysis of spur gear by photoelastic technique and finite element analysis. Int J Theor Appl Res Mech Eng 3(2):39–43. ISSN (Print): 2319-3182

    Google Scholar 

  • Sapieta M, Dekýš V, Kaco M, Pástor M, Sapietová A, Drvárová B (2023) Investigation of the mechanical properties of spur involute gearing by infrared thermography. Appl Sci 13(10):5988

    Article  Google Scholar 

  • Senthilnathan K, Suresh G, Ilaiyavel S, Ravi R, Srinivasan S (2020a) Experimental investigation of polymer matrix composites gears with different fibre proportions. Int J Veh Struct Syst 12(2):212–216

    Google Scholar 

  • Senthilnathan K, Bharani Kumar S, Suresh G, Ravi R, Srinivasan T, Sai Krishnan G (2020b) Design and analysis of gear testing kit and static structural analysis of spur gear using ANSYS software. IOP Conf Ser Mater Sci Eng 988(1):012004

    Article  Google Scholar 

  • Senthilvelan S, Gnanamoorthy R (2007) Effect of rotational speed on the performance of unreinforced and glass fibre reinforced Nylon 6 spur gears. Mater Des 28(3):765–772

    Article  Google Scholar 

  • Shahrubudin N, Lee TC, Ramlan RJPM (2019) An overview on 3DPtechnology: technological, materials, and applications. Procedia Manuf 35:1286–1296

    Article  Google Scholar 

  • Shi K, Yan Y, Mei H, Chen C, Cheng L (2021) 3DPKevlar fibre layer distributions and fibre orientations into nylon composites to achieve designable mechanical strength. Addit Manuf 39:101882

    Google Scholar 

  • Singh TJ, Samanta S (2015) Characterization of Kevlar fibre and its composites: a review. Mater Today Proc 2(4–5):1381–1387

    Article  Google Scholar 

  • Sugavaneswaran M, Arumaikkannu G (2015) Analytical and experimental investigation on elastic modulus of reinforced additive manufactured structure. Mater Des 1980–2015(66):29–36

    Article  Google Scholar 

  • Šuljić I, Gabrić I, Vrljičak I, Butir M (2022) Experimental investigation on the mechanical properties of 3D Printed structural polymer materials. In: MTSM2022 international conference “Mechanical technologies and structural materials” Split, 22–23 September 2022. ISSN 1847-7917

  • Suresh G, Jayakumari LS (2015) Evaluating the mechanical properties of E-Glass fibre/carbon fibre reinforced interpenetrating polymer networks. Polímeros 25:49–57

    Article  Google Scholar 

  • Tallam A, Kishore Mamaduri P, Appala T (2020) Numerical computation for contact stress analysis of spur gear. AIP Conf Proc 2283(1):020101-1–020101-9

    Google Scholar 

  • Thu MP, Lin Min N (2018) Stress analysis on spur gears using ANSYS workbench 16.0. Int J Sci Eng Appl 7(8):208–213

    Google Scholar 

  • Tian X, Todoroki A, Liu T, Wu L, Hou Z, Ueda M, Hirano Y et al (2022) 3DP of continuous fibre reinforced polymer composites: development, application, and prospective. Chin J Mech Eng: Addit Manuf Front 1(1):100016

    Google Scholar 

  • Tiwari SK, Joshi UK (2012) Stress analysis of mating involute spur gear teeth. Int J Eng Res Technol (IJERT) 1(9):2173–2180

    Google Scholar 

  • Tunalioglu MS, Agca BV (2022) Wear and service life of 3-D printed polymeric gears. Polymers 14(10):2064

    Article  Google Scholar 

  • Vigneshwaran K, Shanmugam D, Balasuthagar C (2020) Experimental and analytical stress analysis of spur gear. IOP Conf Ser Mater Sci Eng 912(2):022043

    Article  Google Scholar 

  • Wable V, Mate DM (2016) An investigative study of spur gear failure by FEA and photoelastic method. Int J Sci Res (IJSR) 5:208–215

    Google Scholar 

  • Weng Z, Wang J, Senthil T, Wu L (2016) Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused filament fabrication 3D printing. Mater Des 102:276–283

    Article  Google Scholar 

  • Wickramasinghe S, Do T, Tran P (2020) FFF-based 3DP of polymer and associated composite: a review on mechanical properties, defects and treatments. Polymers 12(7):1529

    Article  Google Scholar 

  • Yao C, Li F, Sun L, Xu G, Yuan P, Liu Y, Yang G, Wang F, Gao B, Jia Y (2021) Finite element analysis of dynamic contact stress of spur gear based on ANSYS. In: The proceedings of the 9th frontier academic forum of electrical engineering, vol I. Springer Singapore, pp 177–187

  • Yeung KKH, Rao KP (2012) Mechanical properties of Kevlar-49 fibre reinforced thermoplastic composites. Polym Polym Compos 20(5):411–424

    Google Scholar 

  • Zhang Y, Purssell C, Mao K, Leigh S (2020) A physical investigation of wear and thermal characteristics of 3DP nylon spur gears. Tribol Int 141:105953

    Article  Google Scholar 

  • Zia AA, Tian X, Liu T, Zhou J, Ghouri MA, Yun J, Li W, Zhang M, Li D, Malakhov AV (2023) Mechanical and energy absorption behaviours of 3DP continuous carbon/Kevlar hybrid thread reinforced PLA composites. Compos Struct 303:116386

    Article  Google Scholar 

  • Zisopol DG, Iacob DV, Portoaca A-I (2022) A theoretical-experimental study of the influence of FFF parameters on PLA spur gear stiffness. Eng Technol Appl Sci Res 12(5):9329–9335

    Article  Google Scholar 

  • Zisopol DG, Minescu M, Iacob DV (2023) A theoretical-experimental study on the influence of FFF parameters on the dimensions of cylindrical spur gears made of PLA. Eng Technol Appl Sci Res 13(2):10471–10477

    Article  Google Scholar 

  • Zmindak M, Kaco M, Sapietova A (2022) Analysis of the contact stresses of spur gears manufactured by 3DP from composite materials. MATEC Web Conf 357:06003

    Article  Google Scholar 

  • Zou X, Yang C, Liu B (2020) The contact and transient dynamic analysis of gear meshing with ANSYS. Open Access Libr J 7(9):1–10

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All the authors conceived of the presented idea. Likhith Pujari and Manoj sourced the relevant papers related to the topic with the support of Mantesh B Khot. Pranam Shetty and Omkar Gaddikeri outlined the abstract and introduction part. Manoj S contributed to the writing of Materials and manufacturing. Omkar with the support of Mantesh Khot wrote the Analysis part. Likhith Pujari prepared the tables and figures and experiment part with support of Pranam Shetty. Mantesh Khot wrote the conclusion with the support of other authors and all the authors have reviewed the manuscript.

Corresponding author

Correspondence to Mantesh B. Khot.

Ethics declarations

Conflict of interest

On behalf of all the authors the corresponding confirms that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pujari, L., Manoj, S., Gaddikeri, O.K. et al. Recent advancements in 3D printing for gear design and analysis: a comprehensive review. Multiscale and Multidiscip. Model. Exp. and Des. (2024). https://doi.org/10.1007/s41939-024-00529-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41939-024-00529-w

Keywords

Navigation