Log in

Predicting pile-bearing capacity utilizing least square support vector regression coupled with giant trevally optimizer and the flying foxes optimization

  • Original Paper
  • Published:
Multiscale and Multidisciplinary Modeling, Experiments and Design Aims and scope Submit manuscript

Abstract

Addressing the intricacies of pile analysis and design poses a complex challenge, particularly in leveraging machine learning (ML) approaches to predict the ultimate load-bearing capacity of piles based on field trial data. This study focuses on develo** sophisticated ML prediction models tailored for calculating pile-bearing capacity (Pu). The foundation of this prediction model relies on the least square support vector regression (LSSVR) technique. A distinctive hybrid strategy is employed, combining the giant trevally optimizer (GTO) and flying foxes optimization (FFO) approaches. This unique amalgamation ensures precise and optimal prediction outcomes. The research relies on a meticulously curated dataset encompassing a diverse array of parameters related to piles and soil properties sourced from various literature. These datasets form the robust foundation for training, validating, and testing the models developed in this study. The implemented methodology has yielded remarkably accurate results, affirming the efficacy of the proposed models. This integration has led to the emergence of three hybrid models: LSFF, LSGT, and LSSVR. Particularly noteworthy is the exceptional performance of the LSFF model, demonstrating outstanding accuracy with an impressive R2 value of 0.993 and a minimal RMSE value of 32.916. These metrics underscore a notable achievement in the precise estimation of Pu, establishing the reliability and effectiveness of the approach taken in this research. The unique hybrid strategy, informed by diverse parameters, improves predictive capabilities, ensuring safer and more robust infrastructure projects by precisely understanding load-bearing capacities in different soil conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amjad M, Ahmad I, Ahmad M, Wróblewski P, KamiÅ„ski PaweÅ‚and Amjad U (2022) Prediction of pile bearing capacity using XGBoost algorithm: modeling and performance evaluation. Appl Sci 12(4):2126

    Article  Google Scholar 

  • Biswas R et al (2023) A novel integrated approach of RUNge Kutta optimizer and ANN for estimating the compressive strength of self-compacting concrete. Case Stud Constr Mater 18:e02163

    Google Scholar 

  • Cao S-G, Liu Y-B, Wang Y-P (2008) A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM. J China Univ Min Technol 18(2):172–176

    Article  Google Scholar 

  • Chapman T, Marcetteau A (2004) Achieving economy and reliability in piled foundation design for a building project. Struct Eng 82(11):32–37

    Google Scholar 

  • Chen Q (2023) "Predicting the settlement of pile based on a hybrid form of the model by considering Least Square Support Vector Regression. Multiscale Multidiscip Model Exp Design. https://doi.org/10.1007/s41939-023-00222-4

    Article  Google Scholar 

  • Chen W, Sarir P, Bui X-N, Nguyen H, Tahir MM, Armaghani DJ (2020) Neuro-genetic, neuro-imperialism, and genetic programming models in predicting the ultimate bearing capacity of the pile. Eng Comput 36:1101–1115

    Article  Google Scholar 

  • Coyle HM, Castello RR (1981) New design correlations for piles in sand. J Geotech Eng Div 107(7):965–986

    Article  Google Scholar 

  • Elsherbiny ZH, El Naggar MH (2013) Axial compressive capacity of helical piles from field tests and numerical study. Can Geotech J 50(12):1191–1203

    Article  Google Scholar 

  • Fletcher R (1987) Practical methods of optimization. Wiley, New York

    Google Scholar 

  • Ghiasi MM, Shahdi A, Barati P, Arabloo M (2014) Robust modeling approach for estimation of compressibility factor in retrograde gas condensate systems. Ind Eng Chem Res 53(32):12872–12887

    Article  Google Scholar 

  • Gnananandarao T, Khatri VN, Dutta RK (2020) Bearing capacity and settlement prediction of multi-edge skirted footings resting on sand. Ing Investig 40(3):9–21

    Article  Google Scholar 

  • Gnananandarao T, Onyelowe KC, Dutta RK, Ebid AM (2023a) Sensitivity analysis and estimation of improved unsaturated soil plasticity index using SVM, M5P, and random forest regression. Artificial intelligence and machine learning in smart city planning. Elsevier, Amsterdam, pp 243–255

    Chapter  Google Scholar 

  • Gnananandarao T, Onyelowe KC, Murthy KSR (2023b) Experience in using sensitivity analysis and ANN for predicting the reinforced stone columns’ bearing capacity sited in soft clays. Artificial intelligence and machine learning in smart city planning. Elsevier, Amsterdam, pp 231–241

    Chapter  Google Scholar 

  • Gnananandarao T, Khatri VN, Onyelowe KC, Ebid AM (2023c) Implementing an ANN model and relative importance for predicting the under drained shear strength of fine-grained soil. Artificial intelligence and machine learning in smart city planning. Elsevier, Amsterdam, pp 267–277

    Chapter  Google Scholar 

  • Haupt RL, Haupt SE (2004) Practical genetic algorithms. Wiley, New York

    Google Scholar 

  • Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349(6245):255–260

    Article  MathSciNet  Google Scholar 

  • Kisi O (2015) Streamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clustering. Water Resour Manag 29:5109–5127

    Article  Google Scholar 

  • Kisi O, Parmar KS (2016) Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. J Hydrol (Amst) 534:104–112

    Article  Google Scholar 

  • Kordjazi A, Nejad FP, Jaksa MB (2014) Prediction of the ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data. Comput Geotech 55:91–102

    Article  Google Scholar 

  • Kumar M, Kar IN (2009) Non-linear HVAC computations using least square support vector machines. Energy Convers Manag 50(6):1411–1418

    Article  Google Scholar 

  • Kumar M, Samui P (2022) Reliability analysis of pile foundation using GMDH, GP and MARS BT—CIGOS 2021. In: Ha-Minh C, Tang AM, Bui TQ, Vu XH, Huynh DVK (eds) Emerging technologies and applications for green infrastructure. Springer Nature, Singapore, pp 1151–1159

    Google Scholar 

  • Kumar S, Tejani GG, Mirjalili S (2019) Modified symbiotic organisms search for structural optimization. Eng Comput 35(4):1269–1296

    Article  Google Scholar 

  • Kumar M, Bardhan A, Samui P, Hu JW, Kaloop MR (2021a) Reliability analysis of pile foundation using soft computing techniques: a comparative study. Processes 9(3):486

    Article  Google Scholar 

  • Kumar S, Tejani GG, Pholdee N, Bureerat S (2021b) Multi-objective passing vehicle search algorithm for structure optimization. Expert Syst Appl 169:114511

    Article  Google Scholar 

  • Kumar M et al (2022a) Hybrid ELM and MARS-based prediction model for bearing capacity of shallow foundation. Processes 10(5):1013

    Article  Google Scholar 

  • Kumar M, Biswas R, Kumar DR, Pradeep T, Samui P (2022b) Metaheuristic models for the prediction of bearing capacity of pile foundation. Geomech Eng 31(2):129

    Google Scholar 

  • Kumar M, Kumar V, Rajagopal BG, Samui P, Burman A (2023a) State of art soft computing based simulation models for bearing capacity of pile foundation: a comparative study of hybrid ANNs and conventional models. Model Earth Syst Environ 9(2):2533–2551. https://doi.org/10.1007/s40808-022-01637-7

    Article  Google Scholar 

  • Kumar M, Biswas R, Kumar DR, Samui P, Kaloop MR, Eldessouki M (2023b) Soft computing-based prediction models for compressive strength of concrete. Case Stud Constr Mater 19:e02321

    Google Scholar 

  • Liu Z, Jiang P, Wang J, Zhang L (2021) Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm. Expert Syst Appl 177:114974

    Article  Google Scholar 

  • Mahmoodi NM, Arabloo M, Abdi J (2014) Laccase immobilized manganese ferrite nanoparticle: synthesis and LSSVM intelligent modeling of decolorization. Water Res 67:216–226

    Article  Google Scholar 

  • Meyerhof GG (1976) Bearing capacity and settlement of pile foundations. J Geotech Eng Div 102(3):197–228

    Article  Google Scholar 

  • Momeni E, Dowlatshahi MB, Omidinasab F, Maizir H, Armaghani DJ (2020) Gaussian process regression technique to estimate the pile bearing capacity. Arab J Sci Eng 45(10):8255–8267

    Article  Google Scholar 

  • Moreno-Salinas D, Chaos D, Besada-Portas E, López-Orozco JA, de la Cruz JM, Aranda J (2013) Semiphysical modeling of the nonlinear dynamics of a surface craft with LS-SVM. Math Probl Eng 2013

  • Nobile MS, Cazzaniga P, Besozzi D, Colombo R, Mauri G, Pasi G (2018) Fuzzy self-tuning PSO: a settings-free algorithm for global optimization. Swarm Evol Comput 39:70–85

    Article  Google Scholar 

  • Onyelowe KC, Gnananandarao T, Nwa-David C (2021) Sensitivity analysis and prediction of erodibility of treated unsaturated soil modified with nanostructured fines of quarry dust using novel artificial neural network. Nanotechnol Environ Eng 6(2):37. https://doi.org/10.1007/s41204-021-00131-2

    Article  Google Scholar 

  • Onyelowe KC, Gnananandarao T, Ebid AM (2022) Estimation of the erodibility of treated unsaturated lateritic soil using support vector machine-polynomial and-radial basis function and random forest regression techniques. Clean Mater 3:100039

    Article  Google Scholar 

  • Ozok AA (2009) Survey design and implementation in HCI. Human–computer interaction. CRC Press, Boca Raton, pp 269–288

    Google Scholar 

  • Paik K, Salgado R (2003) Determination of bearing capacity of open-ended piles in sand. J Geotech Geoenviron Eng 129(1):46–57

    Article  Google Scholar 

  • Pham TA, Ly H-B, Tran VQ, Van Giap L, Vu H-LT, Duong H-AT (2020a) Prediction of pile axial bearing capacity using artificial neural network and random forest. Appl Sci 10(5):1871

    Article  Google Scholar 

  • Pham TA, Tran VQ, Vu H-LT, Ly H-B (2020b) Design deep neural network architecture using a genetic algorithm for estimation of pile bearing capacity. PLoS One 15(12):e0243030

    Article  Google Scholar 

  • Randolph MF, Wroth CP (1978) Analysis of deformation of vertically loaded piles. J Geotech Eng Div 104(12):1465–1488

    Article  Google Scholar 

  • Sadeeq HT, Abdulazeez AM (2022) Giant trevally optimizer (GTO): a novel metaheuristic algorithm for global optimization and challenging engineering problems. IEEE Access 10:121615–121640

    Article  Google Scholar 

  • Samui P, Kim D (2013) Least square support vector machine and multivariate adaptive regression spline for modeling lateral load capacity of piles. Neural Comput Appl 23(3):1123–1127. https://doi.org/10.1007/s00521-012-1043-x

    Article  Google Scholar 

  • Schölkopf B (2022) Causality for machine learning. In: Probabilistic and causal inference: the works of Judea Pearl, pp 765–804

  • Sedaghat B, Tejani GG, Kumar S (2023) Predict the maximum dry density of soil based on individual and hybrid methods of machine learning. Adv Eng Intell Syst. https://doi.org/10.22034/aeis.2023.414188.1129

    Article  Google Scholar 

  • Shooshpasha I, Hasanzadeh A, Taghavi A (2013) Prediction of the axial bearing capacity of piles by SPT-based and numerical design methods. Geomate J 4(8):560–564

    Google Scholar 

  • Suykens JAK, Vandewalle J (2000) Kisi, O. Streamflow forecasting and estimation using least square support vector r. IEEE Trans Circuits Syst I Fundam Theory Appl 47(7):1109–1114

    Article  Google Scholar 

  • Tsafarakis S, Zervoudakis K, Andronikidis A, Altsitsiadis E (2020) Fuzzy self-tuning differential evolution for optimal product line design. Eur J Oper Res 287(3):1161–1169

    Article  MathSciNet  Google Scholar 

  • Zervoudakis K, Tsafarakis S (2022) A global optimizer inspired by the survival strategies of flying foxes. Eng Comput, 1–34

  • Zhang C, Nguyen GD, Einav I (2013) The end-bearing capacity of piles penetrating into crushable soils. Géotechnique 63(5):341–354

    Article  Google Scholar 

  • Zhou Z-H (2021) Machine learning. Springer Nature, Singapore

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ling Chen: Writing—Original draft preparation, Conceptualization, Supervision, Project administration.

Corresponding author

Correspondence to Ling Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Test dataset

D

DSE1

DSE2

DSE3

PTE

Ge

EPTE

Pe

SPTs

SPTt

Pu

300

3.4

5.2

0

3.4

3.4

3.4

12

8.6

6.73

559.8

400

3.85

7.3

0

2.95

3.68

3.58

14.1

11.15

7.08

1440

400

4.1

2.08

0

2.7

3.58

2.7

8.88

6.18

4.86

480

400

4.45

8

1.18

1.95

3.58

2

15.58

13.63

7.69

1032.4

300

3.4

5.2

0

3.4

3.4

3.4

12

8.6

6.73

559.8

300

3.4

5.2

0

3.4

3.43

3.43

12

8.6

6.73

661.6

300

3.4

5.25

0

3.4

3.46

3.41

12.05

8.65

6.75

407.2

400

3.45

8

0.22

2.95

3.57

2.95

14.62

11.67

7.53

1318

400

4.25

8

1.01

2.15

3.57

2.16

15.41

13.26

7.68

1248

400

3.4

7.3

0

3.4

3.5

3.4

14.1

10.7

7.28

958

400

4.1

2.2

0

2.7

3.72

2.72

9

6.3

4.94

610.7

400

4.35

8

1.02

2.05

3.47

4.05

15.42

13.37

7.64

1318

400

4.25

8

0.9

2.15

3.53

2.23

15.3

13.15

7.61

1395

400

4.25

8

0.4

2.15

3.59

2.79

14.8

12.65

7.32

1551

300

3.4

5.24

0

3.4

3.48

3.44

12.04

8.64

6.75

559.8

400

4.25

8

0.4

2.15

3.55

2.75

14.8

12.65

7.32

1392

300

3.4

5.25

0

3.4

3.46

3.41

12.05

8.65

6.75

661.6

400

4.05

8

0.7

2.35

3.47

2.37

15.1

12.75

7.58

1318

300

3.4

5.23

0

3.4

3.44

3.41

12.03

8.63

6.74

585.35

400

4.35

8

0.7

2.05

3.49

2.39

15.1

13.05

7.46

1392

400

4.25

8

1

2.15

3.57

2.17

15.4

13.25

7.67

1248

400

4.25

8

1

2.15

3.58

2.18

15.4

13.25

7.67

1395

400

4.25

8

1

2.15

3.56

2.16

15.4

13.25

7.67

1395

400

4.25

8

1.01

2.15

3.57

2.16

15.41

13.26

7.68

1248

400

4.25

8

0.1

2.15

3.53

3.03

14.5

12.35

7.14

1551

400

3.5

8

0.17

2.9

3.48

2.91

14.57

11.67

7.48

1056

400

4.25

8

1.02

2.15

3.58

2.16

15.42

13.27

7.68

1248

300

3.4

5.25

0

3.4

3.46

3.41

12.05

8.65

6.75

532.4

400

4.35

8

0.8

2.05

3.45

2.25

15.2

13.15

7.52

1392

300

3.4

5.2

0

3.4

3.45

3.45

12

8.6

6.73

610.7

400

4.25

8

0.98

2.15

3.54

2.16

15.38

13.23

7.66

1344

400

4.25

8

1

2.15

3.56

2.16

15.4

13.25

7.67

1344

400

3.45

8

0.25

2.95

3.6

2.95

14.65

11.7

7.55

960

400

4.65

7.24

0

2.15

3.54

3.5

14.04

11.89

6.76

1551

400

4.25

8

0.9

2.15

3.58

2.28

15.3

13.15

7.61

1395

400

3.4

7.3

0

3.4

3.5

3.4

14.1

10.7

7.28

900

400

3.4

7.4

0

3.4

3.61

3.41

14.2

10.8

7.3

1088.8

400

4.25

8

0.1

2.15

3.54

3.04

14.5

12.35

7.14

1551

400

3.4

7.23

0

3.4

3.43

3.4

14.03

10.63

7.26

960

300

3.4

5.3

0

3.4

3.52

3.42

12.1

8.7

6.76

610.7

400

4.1

2

0

2.7

3.55

2.75

8.8

6.1

4.8

610.7

400

4.25

8

1.03

2.15

3.58

2.15

15.43

13.28

7.69

1248

Test dataset

D

DSE1

DSE2

DSE3

PTE

Ge

EPTE

Pe

SPTs

SPTt

Pu

400

3.45

8

0.12

2.95

3.47

2.95

14.52

11.57

7.47

1318

400

4.25

8

1

2.15

3.58

2.18

15.4

13.25

7.67

1395

400

4.35

8

1.11

2.05

3.56

2.05

15.51

13.46

7.69

1128.6

400

4.45

7.21

0

2.35

3.41

2.4

14.01

11.66

6.83

1318

400

4.65

7.38

0

2.15

3.58

3.4

14.18

12.03

6.79

1551

400

4.25

8

1

2.15

3.56

2.16

15.4

13.25

7.67

1248

400

4.25

8

0.2

2.15

3.58

2.98

14.6

12.45

7.2

1551

400

4.65

7.6

0

2.15

3.58

3.18

14.4

12.25

6.84

1446

300

3.4

5.22

0

3.4

3.44

3.42

12.02

8.62

6.74

617

400

4.75

7.4

0

2.05

3.52

3.32

14.2

12.15

6.76

1425

400

4.65

7.4

0

2.15

3.59

3.39

14.2

12.05

6.8

1392

400

3.4

7.3

0

3.4

3.61

3.51

14.1

10.7

7.28

1115.2

300

3.4

5.25

0

3.4

3.49

3.44

12.05

8.65

6.75

559.8

300

3.4

5.25

0

3.4

3.46

3.41

12.05

8.65

6.75

559.8

400

4.25

8

1

2.15

3.58

2.18

15.4

13.25

7.67

1395

300

3.4

5.18

0

3.4

3.38

3.4

11.98

8.58

6.73

559.8

400

4.25

8

0.91

2.15

3.56

2.25

15.31

13.16

7.62

1473

400

4.05

8

0.7

2.35

3.48

2.38

15.1

12.75

7.58

1238

400

4.1

2.01

0

2.7

3.53

2.72

8.81

6.11

4.8

528

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L. Predicting pile-bearing capacity utilizing least square support vector regression coupled with giant trevally optimizer and the flying foxes optimization. Multiscale and Multidiscip. Model. Exp. and Des. (2024). https://doi.org/10.1007/s41939-024-00430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41939-024-00430-6

Keywords

Navigation