Log in

Quantum resource estimation of PRINCE and Midori Block Ciphers

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

With the continuous advancement of quantum technologies, the estimation of quantum resources necessary for quantum tasks becomes extremely important for optimization purpose. Quantum resource estimation approximates the amount of qubits, time, and the number of quantum gates required to complete a quantum computation. The difficulties in estimating quantum resources result the complexity of quantum systems. Precise estimates can be difficult because of the non-linear behaviour, entanglement effects, and resource limitations that might occur in quantum calculations. In this paper, the symmetric key cryptographic algorithms, PRINCE and Midori block ciphers are converted into the quantum circuit which will be used for applying Grover’s algorithm for exhaustive key search that reduces its security level from \(2^n\) bits to \(2^{\frac{n}{2}}\) bits. This paper discusses the construction of a quantum circuit for a substitution box (or S-box) using two level unitary matrix. The construction of substitution boxes in simple block ciphers as quantum circuits has lately been the subject of several publications, but they are limited to only 4-bit. A substitution box of size \(2^n\) bit, where n is a natural number, is converted into a quantum circuit using the two-level unitary matrix method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 2
Algorithm 3
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Atzori L, Iera A, Morabito G (2010) The Internet of Things: a survey. Comput Netw 54(15):2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010

    Article  Google Scholar 

  2. Biryukov A, Perrin L (2023) State of the art in lightweight symmetric cryptography, cryptology ePrint Archive, 2017. https://eprint.iacr.org/2017/511. Accessed 10 Jan

  3. Borghoff J et al (2012) PRINCE—a low-latency block cipher for pervasive computing applications. Adv Cryptol ASIACRYPT 2012:208–225. https://doi.org/10.1007/978-3-642-34961-4_14

    Article  Google Scholar 

  4. Banik S et al (2015) Midori: a block cipher for low energy. Adv Cryptol ASIACRYPT 2015:411–436. https://doi.org/10.1007/978-3-662-48800-3_17

    Article  MathSciNet  Google Scholar 

  5. Yasmin N, Gupta R (2023) Modified lightweight GIFT cipher for security enhancement in resource-constrained IoT devices. Int J Inf Technol. https://doi.org/10.1007/s41870-023-01439-9

    Article  Google Scholar 

  6. Sivakumar A, Sriwastawa A, Muthalagu R (2023) Shakey: an improved cipher for protection of Iot devices. Int J Inf Technol 15:3381–3390. https://doi.org/10.1007/s41870-023-01402-8

    Article  Google Scholar 

  7. Bhoyar P, Sahare P, Hashmi M, Dhok S, Deshmukh R (2024) Lightweight architecture for fault detection in Simeck cryptographic algorithms on FPGA. Int J Inf Technol 16:337–343. https://doi.org/10.1007/s41870-023-01593-0

    Article  Google Scholar 

  8. Deepthi Kakumani K, Singh K (2022) Improved related-cipher attack on Salsa and ChaCha: revisited. Int J Inf Technol 14:1535–1542. https://doi.org/10.1007/s41870-022-00904-1

    Article  Google Scholar 

  9. Anne C et al (2019) Saturnin—a suite of lightweight symmetric algorithms for post-quantum security. https://Project.inria.fr/Saturnin/

  10. Allu SN, Naidu TA, Rao KG (2024) Optimized quantum circuit implementation of SATURNIN for Grover algorithm. Int J Inf Technol. https://doi.org/10.1007/s41870-024-01792-3

    Article  Google Scholar 

  11. Grover LK (1996) A fast quantum mechanical algorithm for database search. ar**v:quant-ph/9605043

  12. Amento-Adelmann B, Grassl M, Langenberg B, Liu Y.K, Schoute E, Steinwandt R (2018) Quantum cryptanalysis of block ciphers: a case study. In: Proceedings of the poster at quantum information processing QIP, Delft, The Netherlands, 15–19. https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1166-29.pdf

  13. Jaques S, Naehrig M, Roetteler M, Virdia F (2020) Implementing grover oracles for quantum key search on AES and LowMC. Adv Cryptol EUROCRYPT 2020:280–310. https://doi.org/10.1007/978-3-030-45724-2_10

    Article  MathSciNet  Google Scholar 

  14. Anand R, Maitra A, Mukhopadhyay S (2020) Grover on SIMON. Quant Inf Process 19:9. https://doi.org/10.1007/s11128-020-02844-w

    Article  MathSciNet  Google Scholar 

  15. Jang K, Choi S, Kwon H, Kim H, Park J, Seo H (2020) Grover on Korean Block Ciphers. Appl Sci 10(18):6407. https://doi.org/10.3390/app10186407

    Article  Google Scholar 

  16. Song G, Jang K, Kim H, Eum S, Sim M, Kim H, Lee W, Seo H (2022) SPEEDY quantum circuit for Grover’s algorithm. Appl Sci 12:6870. https://doi.org/10.3390/app12146870

    Article  Google Scholar 

  17. Yangru Z, Juntao G, Baocang W (2023) Nested quantum search model on symmetric ciphers and its applications, Cryptology ePrint Archive, Paper 2023/327. https://eprint.iacr.org/2023/327

  18. Da L, **ang Z, Runqing X, Shasha Z, **angyong Z (2023) Optimized quantum implementation of AES. Cryptology ePrint Archive

  19. Nielsen M, Chuang I Quantum computation and quantum information. http://mmrc.amss.cas.cn/tlb/201702/W020170224608149940643.pdf

  20. Borghoff J et al (2012) PRINCE—a low-latency block cipher for pervasive computing applications. Adv Cryptol ASIACRYPT 2012:208–225. https://doi.org/10.1007/978-3-642-34961-4_14

    Article  Google Scholar 

  21. Quantum logic gate, Wikipedia, Feb. 29, (2020) https://en.wikipedia.org/wiki/Quantum_logic_gate. Accessed 20 Feb 2023

  22. Singhal A, Chatterjee A (2018) Grover’s Algorithm. ResearchGate. https://www.researchgate.net/publication/342131364_Grover’s_Algorithm

  23. Jang K, Song G, Kim H, Kwon H, Kim H, Seo H (2021) Efficient implementation of PRESENT and GIFT on quantum computers. Appl Sci 11(11):4776. https://doi.org/10.3390/app11114776

    Article  Google Scholar 

  24. Dmytro F (2019) Decomposition of unitary matrix into quantum gates, 8.06x Physical Review, June

  25. Denisenko DV (2019) Quantum circuits for S-box implementation without ancilla qubits. J Exp Theor Phys 128(6):847–855

    Article  Google Scholar 

  26. GitHub. (n.d.). S-Box design/sbox creating code at main. AusafHussainAhklaq/S-Box design. [online] Available at: https://github.com/AusafHussainAhklaq/S-Box_design/blob/main/sbox_creating_code. Accessed 11 Jul 2023

  27. Sracic M: Quantum circuits for matrix multiplication, Last updated July 26, 2011. https://www.math.k-state.edu/research/reu/results2011_files/quantumAlgorithms.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendar Yerukala.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhlaq, A.H., Allu, S.N. & Yerukala, N. Quantum resource estimation of PRINCE and Midori Block Ciphers. Int. j. inf. tecnol. (2024). https://doi.org/10.1007/s41870-024-01997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41870-024-01997-6

Keywords

Navigation