Log in

Automatic skull prototy** framework for damage detection and repairing using computer vision and deep learning techniques

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

Bio-Medical modeling system used to assist medical study, diagnosis, analysis, monitoring, and investing in the medical domain. The medical scanning tools scan, collect, and assemble the fragmented skull-specific geometric data before the medical analysis by various experts for investigations. The skull assembly may undergo severe damage, significantly affecting the medical analysis process. Therefore, need to have an efficient and robust automatic skull prototy** technique. This article proposes the novel Automatic Skull Prototy** (ASP) framework using deep learning and computer vision technique. The ASP framework consists of two main phases: Skull Damage Detection (SDD) and Skull Damage Repairing (SDR). For SDD, we propose the integrated deep learning model using Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). The SDR model performs the template loading and template matching process to discover the damaged regions and repair them by fusing the missing geometric data of the skull template into the original damaged skull. Experimental results demonstrate the improved efficacy and robustness of the proposed framework. The SDR outcomes show the effective repairing of skull models but scalability limitations. The real-time skull model dataset preparation and analysis will be interesting for future research. The ASP framework benefited the forensic, archaeological, anthropological, biomedical applications for processing, analysis, investigation, and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Simon LV, Newton EJ (2022) Basilar Skull Fractures. 2021 Aug 11. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing;. PMID: 29261908.

  2. Taha A, Gan YC, Chavda SV, Wasserberg J (2007) A review of base of skull fractures. Trauma 9(1):29–37. https://doi.org/10.1177/1460408607083961

    Article  Google Scholar 

  3. Liu-Shindo M, Hawkins DB (1989) Basilar skull fractures in children. Int J Pediatr Otorhinolaryngol 17(2):109–117. https://doi.org/10.1016/0165-5876(89)90086-4

    Article  Google Scholar 

  4. Mohamad J (2021) Schädelbasisfrakturen. Radiologe 61(8):704–709. https://doi.org/10.1007/s00117-021-00879-3

    Article  Google Scholar 

  5. Mangrulkar A, Rane S, Sunnapwar V (2020) Image-based bio-cad modeling: overview, scope, and challenges. J Phys: Conf Ser 1706:012189. https://doi.org/10.1088/1742-6596/1706/1/012189

    Article  Google Scholar 

  6. Li J, Gsaxner C, Pepe A, Morais A, Alves V, von Campe G, Egger J (2021) Synthetic skull bone defects for automatic patient-specific craniofacial implant design. Sci Data. https://doi.org/10.1038/s41597-021-00806-0

    Article  Google Scholar 

  7. Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med imaging Graph 31(4–5):198–211

    Article  Google Scholar 

  8. Omstead J (2011) Facial reconstruction. Uni West Ont Anthrol 10(1):37–46

    Google Scholar 

  9. Shen P, Dublin A, Bobinski M (2016) Basic imaging of skull base trauma. J Neurol Surg Part B Skull Base 77(05):381–387. https://doi.org/10.1055/s-0036-1583540

    Article  Google Scholar 

  10. Ringl H, Schernthaner RE, Schueller G, Balassy C, Kienzl D, Botosaneanu A, Schima W (2010) The skull unfolded: a cranial CT visualization algorithm for fast and easy detection of skull fractures. Radiology 255(2):553–562. https://doi.org/10.1148/radiol.10091096

    Article  Google Scholar 

  11. Yamada A, Teramoto A, Otsuka T, Kudo K, Anno H, Fujita H (2016) Preliminary study on the automated skull fracture detection in CT images using black-hat transform. In: Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference. 6437–6440. https://doi.org/10.1109/EMBC.2016.7592202

  12. Zhao Y, Wei L, Li X, Manhein M (2011) An automatic assembly and completion framework for fragmented skulls. In: 2011 International Conference on Computer Vision. https://doi.org/10.1109/iccv.2011.6126540

  13. Uke N, Pise P, Mahajan HB et al (2021) Healthcare 4.0 Enabled Lightweight Security Provisions for Medical Data Processing. Turk J Comput Math https://doi.org/10.17762/turcomat.v12i11.5858.

  14. Mahajan HB, Badarla A (2021) Cross-layer protocol for WSN-assisted IoT smart farming applications using nature inspired algorithm. Wirel Pers Commun. https://doi.org/10.1007/s11277-021-08866-6

    Article  Google Scholar 

  15. Yu W, Li M, Li X (2012) Fragmented skull modeling using heat kernels. Graph Models 74(4):140–151. https://doi.org/10.1016/j.gmod.2012.03.011

    Article  Google Scholar 

  16. Zhang K, Li X (2014) A graph-based optimization algorithm for fragmented image reassembly. Graph Models 76(5):484–495. https://doi.org/10.1016/j.gmod.2014.03.001

    Article  Google Scholar 

  17. Mahoney PF, Carr DJ, Delaney RJ, Hunt N, Harrison S, Breeze J, Gibb I (2017) Does preliminary optimisation of an anatomically correct skull-brain model using simple simulants produce clinically realistic ballistic injury fracture patterns? Int J Legal Med 131(4):1043–1053. https://doi.org/10.1007/s00414-017-1557-y

    Article  Google Scholar 

  18. Zhang K, Yu W, Manhein M, Waggenspack W, Li X (2015) 3D Fragment Reassembly Using Integrated Template Guidance and Fracture-Region Matching. In: 2015 IEEE International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv.2015.247.

  19. Idram I et al (2019) Development of mesh-defect removal algorithm to enhance the fitting of 3D-printed parts for comminuted bone fractures. J Med Biol Eng 39:855–873. https://doi.org/10.1007/s40846-019-00477-8

    Article  Google Scholar 

  20. Wan Zaki WMD, Ahmad Fauzi MF, Besar R (2009) A new approach of skull fracture detection in CT brain images. Vis Inform Bridging Res Pract. https://doi.org/10.1007/978-3-642-05036-7_16

    Article  Google Scholar 

  21. Yamada A, Teramoto A, Otsuka T, Kudo K, Anno H, Fujita H (2016) Preliminary study on the automated skull fracture detection in CT images using black-hat transform. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). https://doi.org/10.1109/embc.2016.7592202.

  22. Shan W et al (2021) Automated identification of skull fractures with deep learning: a comparison between object detection and segmentation approach. Front Neurol 12:687931. https://doi.org/10.3389/fneur.2021.687931

    Article  Google Scholar 

  23. Yilmaz B, Durdu A, Emlik GD (2016) A new method for skull strip** in brain MRI using multistable cellular neural networks. Neural Comput Appl 29(8):79–95. https://doi.org/10.1007/s00521-016-2834-2

    Article  Google Scholar 

  24. Dimililer K (2017) IBFDS: Intelligent bone fracture detection system. Procedia Comput Sci 120:260–267. https://doi.org/10.1016/j.procs.2017.11.237

    Article  Google Scholar 

  25. Rehman HZU, Hwang H, Lee S (2020) Conventional and deep learning methods for skull strip** in brain MRI. Appl Sci 10(5):1773. https://doi.org/10.3390/app10051773

    Article  Google Scholar 

  26. Dehbozorgi A, Mousavi-Roknabadi RS, Hosseini-Marvast SR, Sharifi M, Sadegh R, Farahmand F, Damghani F (2021) Diagnosing skull fracture in children with closed head injury using point-of-care ultrasound vs. computed tomography scan. Eur J Pediatr 180(2):477–484. https://doi.org/10.1007/s00431-020-03851-w (Epub 2020 Oct 28. Erratum in: Eur J Pediatr. 2020 Nov 19;: PMID: 33118087; PMCID: PMC7594935)

    Article  Google Scholar 

  27. Kalmet PHS, Sanduleanu S, Primakov S, Wu G, Jochems A, Refaee T, Ibrahim A, Hulst LV, Lambin P, Poeze M (2020) Deep learning in fracture detection: a narrative review. Acta Orthop. https://doi.org/10.1080/17453674.2019.1711323

    Article  Google Scholar 

  28. Kalavathi P, Prasath VB (2016) Methods on Skull Strip** of MRI Head Scan Images-a Review. J Digit Imaging 29(3):365–379. https://doi.org/10.1007/s10278-015-9847-8

    Article  Google Scholar 

  29. Kaul K, Chauhan D (2021) Brain MRI analysis and segmentation using 2d-Unet architecture. Eur J Mol Clin Med 08(03):2021 (ISSN 2515–8260)

    Google Scholar 

  30. Mangrulkar A, Rane S, Sunnapwar V (2020) Computer vision methods for fragmented skull prototy**: Bio-CAD application. In: 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). https://doi.org/10.1109/icssit48917.2020.9214197

  31. Mangrulkar A, Rane SB, Sunnapwar V (2021) Automated skull damage detection from assembled skull model using computer vision and machine learning. Int J Inf Tecnol. https://doi.org/10.1007/s41870-021-00752-5

    Article  Google Scholar 

  32. Nagpal S, Singh M, Jain A, Singh R, Vatsa M, Noore A (2017) On Matching Skulls to Digital Face Images: A Preliminary Approach. In: Proceedings of IEEE International Joint Conference on Biometrics

  33. https://data.lhncbc.nlm.nih.gov/public/Visible-Human/MaleImages/radiological/normalCT. Accessed 11 Oct 2021

  34. https://github.com/. Accessed 11 Oct 2021

  35. https://www.kaggle.com/. Accessed 11 Oct 2021

  36. Wang G, Hu Y, Li X et al (2020) Impacts of skull strip** on construction of three-dimensional T1-weighted imaging-based brain structural network in full-term neonates. BioMed Eng OnLine 19:41. https://doi.org/10.1186/s12938-020-00785-0

    Article  Google Scholar 

Download references

Acknowledgements

I would like to express my deepest gratitude and thanks to Dr Kiran Bhole, Dr. S. S. Umale and Dr. P. H. Sawant, R & D Dean, Head of Mechanical Engineering Department, and Principal, Sardar Patel college of Engineering, Mumbai for their support, guidance and motivation during the various phases of writing this article. We also extend thanks to Dr. S. S. Mantha, former chairman, AICTE, Delhi, India for his continuous technical support and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol Mangrulkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangrulkar, A., Rane, S.B. & Sunnapwar, V. Automatic skull prototy** framework for damage detection and repairing using computer vision and deep learning techniques. Int. j. inf. tecnol. 14, 3527–3537 (2022). https://doi.org/10.1007/s41870-022-00956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-022-00956-3

Keywords

Navigation