Log in

A novel algorithmic approach of open eye analysis for drowsiness detection

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

Drowsiness is the crucial reason for road accidents nowadays, as per the available statistics. Several valuable lives may collapse because of this. Such valuable lives can be rescued via the detection of drowsiness at its earlier stage. This paper emphasizes a novel algorithmic approach to recognize the driver’s drowsiness at its initial stage with remarkable accuracy via employing computer vision techniques purely. Our proposed work has selected the most noteworthy temporal features of eyes (Eye Aspect Ratio, pupil’s center) and head (tip of the nose) to classify the driver’s drowsy state more precisely. Further, our developed framework resolved the issue of occluded frames at its pre-processing step via applying the condition of occlusion. Afterward, we have imposed three checks via employing eye aspect ratio, pupil’s center, and head (tip of the nose) movement to ensure the correct drowsy state of the driver. Consequently, the performance and accuracy of the overall system have improved in contrast to existing Techniques. Thus, our proposed system has achieved an accuracy of 94.2% in open eye detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sadeghniiat-Haghighi K, Yazdi Z (2015) Fatigue management in the workplace. Ind Psychiatry J 24(1):12. https://doi.org/10.4103/0972-6748.160915

    Article  Google Scholar 

  2. Jiang L, **e W, Zhang D, Gu T (2021) Smart diagnosis: deep learning boosted driver inattention detection and abnormal driving prediction. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3103852

    Article  Google Scholar 

  3. Road Accidents in India 2018. https://morth.nic.in/sites/default/filesAccidednt.pdf, pp. 1–125, Accessed 2 March 2021

  4. Wheaton AG, Shults RA, Chapman DP, Ford ES, Croft JB (2014) Drowsy driving and risk behaviors—10 states and Puerto Rico, 2011–2012. MMWR Morb Mortal Week Rep 63(26):557

    Google Scholar 

  5. Wheaton AG, Shults RA, Chapman DP, Ford ES, Croft JB (2013) Drowsy driving 19 states and the district of Columbia, 2009-2010. MMWR Morb Mortal Wkly Rep 63:1033

    Google Scholar 

  6. Wei CS, Wang YT, Lin CT, Jung TP (2018) Toward drowsiness detection using non-hair-bearing EEG-based braincomputer interfaces. IEEE Trans Neural Syst Rehabil Eng 26(2):400–406. https://doi.org/10.1109/TNSRE.2018.2790359

    Article  Google Scholar 

  7. Cui Y, Xu Y, Wu D (2019) EEG-based driver drowsiness estimation using feature weighted episodic training. IEEE Trans Neural Syst Rehabil Eng 27(11):2263–2273. https://doi.org/10.1109/TNSRE.2019.2945794

    Article  Google Scholar 

  8. Ghoddoosian R, Galib M, Athitsos V (2019) A realistic dataset and baseline temporal model for early drowsiness detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. http://www.cv-foundation.org/

  9. Panicker AD, Nair MS (2017) Open-eye detection using iris–sclera pattern analysis for driver drowsiness detection. Sādhanā 42(11):1835–1849. https://doi.org/10.1007/s12046-017-0728-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Akrout B, Mahdi W (2021) A novel approach for driver fatigue detection based on visual characteristics analysis. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-021-03311-9

    Article  Google Scholar 

  11. Hu Y, Lu M, **e C, Lu X (2019) Driver drowsiness recognition via 3d conditional gan and two-level attention bi-lstm. IEEE Trans Circuits Syst Video Technol 30(12):4755–4768. https://doi.org/10.1109/TCSVT.2019.2958188

    Article  Google Scholar 

  12. Maior CBS, das Chagas Moura MJ, Santana JMM, Lins ID (2020) Real-time classification for autonomous drowsiness detection using eye aspect ratio. Expert Syst Appl 158:113505. https://doi.org/10.1016/j.eswa.2020.113505

    Article  Google Scholar 

  13. Khan MQ, Lee S (2019) A comprehensive survey of driving monitoring and assistance systems. Sensors 19(11):2574. https://doi.org/10.3390/s19112574

    Article  Google Scholar 

  14. Verma KK, Singh BM, Dixit A (2019) A review of supervised and unsupervised machine learning techniques for suspicious behavior recognition in intelligent surveillance system. Int J Inf Technol. https://doi.org/10.1007/s41870-019-00364-0

    Article  Google Scholar 

  15. Pandey NN, Muppalaneni NB (2021) Real-time drowsiness identification based on eye state analysis. In 2021 international conference on artificial intelligence and smart systems (ICAIS). IEEE, pp 1182–1187. https://doi.org/10.1109/ICAIS50930.2021.9395975

  16. Raju VSS, Belwal M (2021) Driver drowsiness detection. Computer networks and inventive communication technologies. Springer, Singapore, pp 975–983

    Chapter  Google Scholar 

  17. Selvakumar K, Jerome J, Rajamani K, Shankar N (2016) Real-time vision based driver drowsiness detection using partial least squares analysis. J Signal Process Syst 85(2):263–274. https://doi.org/10.1007/s11265-015-1075-4

    Article  Google Scholar 

  18. IMM database. http://www2.compute.dtu.dk/~aam/

  19. Ramzan M, Khan HU, Awan SM, Ismail A, Ilyas M, Mahmood A (2019) A survey on state-of-the-art drowsiness detection techniques. IEEE Access 7:61904–61919. https://doi.org/10.1109/ACCESS.2019.2914373

    Article  Google Scholar 

  20. Savaş BK, Becerikli Y (2020) Real time driver fatigue detection system based on multi-task ConNN. IEEE Access 8:12491–12498. https://doi.org/10.1109/ACCESS.2020.2963960

    Article  Google Scholar 

  21. El Kaddouhi S, Saaidi A, Abarkan M (2017) Eye detection based on the Viola-Jones method and corners points. Multimedia Tools Appl 76(21):23077–23097. https://doi.org/10.1007/s11042-017-4415-5

    Article  Google Scholar 

  22. Gong W, Tan Y, Tai Y (2020) Hierarchical HMMs on eyes for driver drowsiness detection. In: 2020 Chinese automation congress (CAC). IEEE, pp 3328–3333. https://doi.org/10.1109/CAC51589.2020.9327367

  23. Cho SW, Baek NR, Kim MC, Koo JH, Kim JH, Park KR (2018) Face detection in nighttime images using visible-light camera sensors with two-step faster region-based convolutional neural network. Sensors 18(9):2995. https://doi.org/10.3390/s18092995

    Article  Google Scholar 

  24. Pandey P, Tyagi AK, Ambekar S, Ap P (2020) Skin segmentation from nir images using unsupervised domain adaptation through generative latent search. ar**v preprint

  25. Li SZ, Chu R, Liao S, Zhang L (2007) Illumination invariant face recognition using near-infrared images. IEEE Trans Pattern Anal Mach Intell 29(4):627–639. https://doi.org/10.1109/TPAMI.2007.1014

    Article  Google Scholar 

  26. Nguyen DT, Pham TD, Lee YW, Park KR (2018) Deep learning-based enhanced presentation attack detection for iris recognition by combining features from local and global regions based on NIR camera sensor. Sensors 18(8):2601. https://doi.org/10.3390/s18082601

    Article  Google Scholar 

  27. Mehendale N (2020) Facial emotion recognition using convolutional neural networks (FERC). SN Appl Sci 2(3):1–8. https://doi.org/10.1007/s42452-020-2234-1

    Article  Google Scholar 

  28. Balayesu N, Kalluri HK (2020) An extensive survey on traditional and deep learning-based face sketch synthesis models. Int J Inf Technol 12(3):995–1004. https://doi.org/10.1007/s41870-019-00386-8

    Article  Google Scholar 

  29. Rani PI, Muneeswaran K (2017) Recognize the facial emotion in video sequences using eye and mouth temporal Gabor features. Multimedia Tools Appl 76(7):10017–10040. https://doi.org/10.1007/s11042-016-3592-y

    Article  Google Scholar 

  30. Mutneja V, Singh S (2019) Modified Viola-Jones algorithm with GPU accelerated training and parallelized skin color filtering-based face detection. J Real-Time Image Proc 16(5):1573–1593. https://doi.org/10.1007/s11554-017-0667-6

    Article  Google Scholar 

  31. Mutneja V, Singh S (2018) GPU accelerated face detection from low resolution surveillance videos using motion and skin color segmentation. Optik 157:1155–1165. https://doi.org/10.1016/j.ijleo.2017.11.188

    Article  Google Scholar 

  32. Murphy TM, Broussard R, Schultz R, Rakvic R, Ngo H (2017) Face detection with a Viola-Jones based hybrid network. IET Biometr 6(3):200–210. https://doi.org/10.1049/iet-bmt.2016.0037

    Article  Google Scholar 

  33. Iqbal M, Sameem MSI, Naqvi N, Kanwal S, Ye Z (2019) A deep learning approach for face recognition based on angularly discriminative features. Pattern Recogn Lett 128:414–419. https://doi.org/10.1016/j.patrec.2019.10.002

    Article  Google Scholar 

  34. Kambi Beli IL, Guo C (2017) Enhancing face identification using local binary patterns and k-nearest neighbors. J Imaging 3(3):37. https://doi.org/10.3390/jimaging3030037

    Article  Google Scholar 

  35. Kortli Y, Jridi M, Al Falou A, Atri M (2020) Face recognition systems: a survey. Sensors 20(2):342. https://doi.org/10.3390/s20020342

    Article  Google Scholar 

  36. Kazemi V, Sullivan J (2014) One millisecond face alignment with an ensemble of regression trees. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1867–1874. https://openaccess.thecvf.com/content_cvpr_2014/html/Kazemi_One_Millisecond_Face_2014_CVPR_paper.html

  37. Chandra MA, Bedi SS (2018) Survey on SVM and their application in image classification. Int J Inf Technol. https://doi.org/10.1007/s41870-017-0080-1

    Article  Google Scholar 

  38. Rao BS (2020) Dynamic histogram equalization for contrast enhancement for digital images. Appl Soft Comput 89:106114. https://doi.org/10.1016/j.asoc.2020.106114

    Article  Google Scholar 

  39. Gangonda SS, Patavardhan PP, Karande KJ (2021) VGHN: variations aware geometric moments and histogram features normalization for robust uncontrolled face recognition. Int J Inf Technol. https://doi.org/10.1007/s41870-021-00703-0

    Article  Google Scholar 

  40. Ju M, Ding C, Zhang D, Guo YJ (2018) Gamma-correction-based visibility restoration for single hazy images. IEEE Signal Process Lett 25(7):1084–1088. https://doi.org/10.1109/LSP.2018.2839580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nageshwar Nath Pandey.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, N.N., Muppalaneni, N.B. A novel algorithmic approach of open eye analysis for drowsiness detection. Int. j. inf. tecnol. 13, 2199–2208 (2021). https://doi.org/10.1007/s41870-021-00811-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-021-00811-x

Keywords

Navigation