Log in

Microwave absorption behavior of Gd-doped spinel ferrites at high frequencies

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The spinel ferrites (SFs) are renowned for their distinctive magnetic and electrical characteristics. Sol-gel route was used for the fabrication of Sr0.6 Zn0.4 Gdx Fe2-x O4 (0.00, 0.025, 0.050, 0.075, 0.100) ferrites. The structural, magnetic, microwave, and DC (direct current) properties of prepared Nps were found using of number characterization techniques. The X-ray diffraction (XRD) pattern of Sr0.6 Zn0.4 Gdx Fe2-x O4 SFs showed a single cubic phase. The magnetic behavior was determined by applying a field of 2 kOe. The various magnetic features, including those determined based on the M-H loop, and prepared spinel ferrites showed the soft nature of magnetic materials. When amount of gadolinium (Gd) is increased, then saturation magnetization, coercivity, remanence magnetization is decreased. The Ms values decreased from 69.36 to 32.18 emu/g, coercivity reduced from 220 to 14 emu/g, and remanence magnetization is decreased from 32 to 3 emu/g. The electrical parameters revealed that direct current resistivity and activation energy (Ea) increased (from 0.16 eV to 0.28eV) with the inclusion of the Gd. The activation energy was increased from 0.16 to 0.28 eV. The dielectric constant and loss of permittivity and permeability were determined by applying the frequency 5.5–9.5 GHz. From the above enhanced parameters, it can be concluded that fabricated SFs may be suitable for high-frequency devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Subramanian, A.P., Jaganathan, S.K., Manikandan, A., Pandiaraj, K.N., Gomathi, N., Supriyanto, E.: Recent trends in nano-based drug delivery systems for efficient delivery of phytochemicals in chemotherapy. RSC Adv. 6, 48294–48314 (2016)

    Article  CAS  Google Scholar 

  2. Abraham, A.G., Manikandan, A., Manikandan, E., Vadivel, S., Jaganathan, S.K., Baykal, A., SriRenganathan, iP.: Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ions) doped spinel MgFe2O4 ferrite nanocomposites. J. Magn. Magn. Mater. 452, 380–388 (2018)

    Article  CAS  Google Scholar 

  3. Stergiou, C.: Magnetic, dielectric and microwave absorption properties of rare earth doped Ni–Co and Ni–Co–Zn spinel ferrites. J. Magn. Magn. Mater. 426, 629–635 (2017)

    Article  CAS  Google Scholar 

  4. Sattar, A.A., Wafik, A.H., El-shokrofy, K.M.: Magnetic properties of Cu ± Zn ferrites doped with rare earth oxides. Phys. Stat. Sol. (a) 171, 563–570 (1999)

    Article  CAS  Google Scholar 

  5. Zipare, K.V., Bandgar, S.S., Shahane, G.S.: Effect of Dy-substitution on structural and magnetic properties of MnZn ferrite nanoparticles. J. Rare Earths 36, 86–94 (2018)

    Article  CAS  Google Scholar 

  6. Abdellatif, M.H., Abdellatif, M.H., El-Komy, G.M., Azab, A.A.: Magnetic characterization of rare earth doped spinel ferrite. J. Magn. Magn. Mater. 442, 445–452 (2017)

    Article  CAS  Google Scholar 

  7. Azim-Araghi, M.E., et al.: Synthesis and magnetic properties of SrZn1−xNixFe16O27 (x ≤ 0.25) hexagonal ferrites prepared by solution combustion method. J. Magn. Magn. Mater. 464, 225–231 (2018)

    Google Scholar 

  8. Kim, J.H., et al.: Effect of Ni substitution on structural and magnetic properties of SrZn0.5Fe11.5O19 hexagonal ferrites. J. Alloy. Compd. 766, 228–233 (2018)

    Google Scholar 

  9. Kuhire, M.S., et al.: Structural and magnetic properties of Sr-Zn nanoferrites synthesized by a modified co-precipitation method. J. Magn. Magn. Mater. 458, 313–320 (2018)

    Google Scholar 

  10. Al-Wahaibi, T., et al.: Magnetic and structural properties of Sr-Zn nanoferrite synthesized by microwave-assisted combustion method. J. Mater. Sci.: Mater. Electron. 29(3), 2554–2560 (2018)

    Google Scholar 

  11. Wang, H., et al.: Synthesis and magnetic properties of Sr1−xZnxFe12−2xTi2xO19 ferrite nanoparticles for high-frequency applications. J. Magn. Magn. Mater. 460, 189–195 (2018)

    Google Scholar 

  12. Roy, P.K., Bera, J.: Electromagnetic properties of samarium-substituted NiCuZn ferrite prepared by auto-combustion method. J. Magn. Magn. Mater. 321, 247–251 (2009)

    Article  CAS  Google Scholar 

  13. Chen, L., Shen, Y., Bai, J.: Large-scale synthesis of uniform spinel ferrite nanoparticles from hydrothermal decomposition of trinuclear heterometallic oxo-centered acetate clusters. Mater. Lett. 63, 1099–1101 (2009)

    Article  CAS  Google Scholar 

  14. Sangeeta, T., Katyal, S.C., Singh, M.: Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. J. Magnet. Magnet. Mater. 321, 1–7 (2009)

    Article  Google Scholar 

  15. Gadkari, A.B., Shinde, T.J., Vasambekar, P.N.: Structural analysis of Y3þ doped Mg–Cd ferrites prepared by oxalate co-precipitation method. Mater. Chem. Phys. 114, 505–510 (2009)

    Article  CAS  Google Scholar 

  16. Hung, M., Rao, M.V.M., Tsai, D.: Microstructures and electrical properties of calcium substituted LaFeO3 as SOFC cathode. Mater. Chem. Phys. 101, 297–302 (2007)

    Article  CAS  Google Scholar 

  17. Wang, W., Lin, B., Zhang, H., Sun, Y., Zhang, X., Yang, H.: Synthesis, morphology and electrochemical performances of perovskite type oxide LaxSr1−xFeO3 nanofbers prepared by electrospinning. J. Phys. Chem. Sol. 124, 144–150 (2019)

    Article  CAS  Google Scholar 

  18. Islam, M., Khan, M. K. R., Kumar, A., Rahman, M. M., Abdullah-Al-Mamun, M., Rashid, R., ... & Sarker, M. S. I.: Sol–gel route for the synthesis of CoFe2–x Er x O4 nanocrystalline ferrites and the investigation of structural and magnetic properties for magnetic device applications. Acs Omega 7(24), 20731–20740 (2022)

  19. Kumar, P., Chand, J., Verma, S., Singh, M.: Micro-structural studies of gadolinium doped cobalt ferrites. Int. J. Theor. Appl. Sci 3(2), 10–12 (2011)

    Google Scholar 

  20. Manzoor, A., Khan, M.A., Shahid, M., Warsi, M.F.: Investigation of structural, dielectric and magnetic properties of Ho substituted nanostructured lithium ferrites synthesized via auto-citric combustion route. J. Alloy. Compd. 710, 547–556 (2017)

    Article  CAS  Google Scholar 

  21. Ramzan, R., Tariq, M., Ashiq, M. N., Albalawi, H., Ahmad, I., Alhossainy, M. H., ... & AlObaid, A. A.: Effect of yttrium ion on electrical and magnetic properties of barium based spinel ferrites. J. Mater. Res. Technol. 12, 1104–1112 (2021)

  22. Nairan, A., Khan, U., Naz, S., Saeed, M., Dang, W., Gao, J.: Effect of Barium do** on structural and magnetic properties of nickel ferrite. Solid State Sci. 131, 106965 (2022)

    Article  CAS  Google Scholar 

  23. Zubair, A., Ahmad, Z., Mahmood, A., Cheong, W.-C., Ali, I.: Muhammad Azhar Khan, Adeel Hussain Chughtai, Muhammad Naeem Ashiq, Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites. Results Phys. 7, 3203–3208 (2017)

    Article  Google Scholar 

  24. Ahmad, S.I., Ansari, S.A., Kumar, D.R.: Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite. Mater. Chem. Phys. 208, 248–257 (2018)

    Article  CAS  Google Scholar 

  25. Rahman, M.T., Vargas, M., Ramana, C.V.: Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloy. Compd. 617, 547–562 (2014)

    Article  CAS  Google Scholar 

  26. Mozafari, M., Amighian, J., Darsheshdar, E.: Magnetic and structural studies of nickel-substituted cobalt ferrite nanoparticles, synthesized by the sol–gel method. J. Magn. Magn. Mater. 350, 19–22 (2014)

    Article  Google Scholar 

  27. Demirezen, S., et al.: Frequency and voltage dependent profle of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors. Results Phys. 6, 180–185 (2016)

    Article  Google Scholar 

  28. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976)

    Article  Google Scholar 

  29. Haralkar, S.J., Kadam, R.H., More, S.S., Shirsath, S.E., Mane, M.L., Patil, S., Mane, D.R.: Substitutional effect of Cr3? ions on the properties of Mg–Zn ferrite nanoparticles. Physica B 407, 4338–4346 (2012)

    Article  CAS  Google Scholar 

  30. Tholkappiyan, R., Vishista, K.: Influence of lanthanum on the optomagnetic properties of zinc ferrite prepared by combustion method. Physica B 448, 177 (2014)

    Article  CAS  Google Scholar 

  31. Almessiere, M.A., Slimani, Y., Güner, S., Nawaz, M., Baykal, A., Aldakheel, F., et al.: Magnetic and structural characterization of Nb3+ -substituted CoFe2O4 nanoparticles. Ceram. Int. 45, 8222 (2019)

    Article  CAS  Google Scholar 

  32. Gao, Y., Wang, Z., Pei, J., Zhang, H.: Structural, elastic, thermal and soft magnetic properties of Ni-Zn-Li ferrites. J. Alloys Compd. 774, 1233 (2019)

    Article  CAS  Google Scholar 

  33. Kakade, S., Kambale, R., Ramanna, C., Kolekar, Y.: Crystal strain, chemical bonding, magnetic and magnetostrictive properties of erbium (Er3+) ion substituted cobalt-rich ferrite (Co1.1Fe1.9−xErxO4). RSC Adv. 6(40), 33308 (2016)

    Article  CAS  Google Scholar 

  34. Venturini, J., Zampiva, R.Y.S., Piva, D.H., et al.: Conductivity dynamics of metallic-to-insulator transition near room temperature in normal spinel CoFe2O4 nanoparticles. J Mater Chem C. 6, 4720–4726 (2018)

    Article  CAS  Google Scholar 

  35. Verwey, E.J.W., De Boer, J.H.: Cation arrangement in a few oxides with crystal structures of the spinel type. Recl. Trav. Chim. Pays-Bas 55, 531–540 (1936)

    Article  CAS  Google Scholar 

  36. Chand, J., Kumar, G., Pawan Kumar, S.K., Sharma, M., Knobel, M.S.: Effect of Gd3+ do** on magnetic, electric and dielectric properties of MgGdxFe2−xO4 ferrites processed by solid state reaction technique. J. Alloys Compd. 509, 9638–9644 (2011)

    Article  CAS  Google Scholar 

  37. Lakshman, A., SubbaRao, P.S.V., Rao, B.P., Rao, K.H.: Electrical properties of In3+ and Cr3+ substituted magnesium–manganese ferrites. J. Phys. D: Appl. Phys. 38, 673–678 (2005)

    Article  CAS  Google Scholar 

  38. Dar, M.A., Batoo, K.M., Verma, V., Siddiqui, W.A., Kotnala, R.K.: Synthesis and characterization of nano-sized pure and Al-doped lithium ferrite having high value of dielectric constant. J. Alloys Compd. 493, 553–560 (2010)

  39. Yousaf, S., Ahmad, I., Kanwal, M., et al.: Structural and electrical properties of Ba-substituted spinel ferrites. Mater. Sci. Semicond. Process. 122, 105488 (2021)

    Article  CAS  Google Scholar 

  40. Kambale, R.C., Shaikh, P.A., Kambale, S.S., Kolekar, Y.D.: J. Alloy. Compd. 478, 599 (2009)

    Article  CAS  Google Scholar 

  41. Almessiere, M.A., Slimani, Y., Baykal, A.: Impact of Nd-Zn co-substitution on microstructure and magnetic properties of SrFe12O19 nanohexaferrite. Ceram. Int. 45, 963–969 (2019)

    Article  CAS  Google Scholar 

  42. Thakur, P., Sharma, R., Sharma, V., Barman, P.B., Kumar, M., Barman, D., Katyal, S.C., Sharma, P.: Gd3+ doped Mn-Zn soft ferrite nanoparticles: superparamagnetism and its correlation with other physical properties. J. Magn. Magn. Mater. 432, 208–217 (2017)

    Article  CAS  Google Scholar 

  43. Ji, B., Tian, C., Zhang, Q., Ji, D., Yang, J., ** Mn-Zn ferrites obtained by sol-gel auto-combustion method. J RARE EARTH. 34, 1017–1023 (2016)

    Article  CAS  Google Scholar 

  44. Almessiere, M.A., Slimani, Y., Güner, S., Nawaz, M., Baykal, A., Aldakheel, F., Akhtar, S., Ercan, I., Belenli, İ, Ozçelik, B.: Magnetic and structural characterization of Nb3+-substituted CoFe2O4 nanoparticles. Ceram. Int. 45, 8222–8232 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The researchers would like to acknowledge Deanship of Scientific Research, Taif University, for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

All have done equal contribution.

Corresponding author

Correspondence to Hafiz Muhammad Tahir Farid.

Ethics declarations

Ethical approval

Yes, this article complies with ethical standards of the journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhadhrami, A., Zeshan, M. & Farid, H.M.T. Microwave absorption behavior of Gd-doped spinel ferrites at high frequencies. J Aust Ceram Soc 60, 609–618 (2024). https://doi.org/10.1007/s41779-023-00982-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00982-9

Keywords

Navigation