Log in

Densification mechanism and mechanical properties of oscillatory pressure sintered Al2O3-Ti(C,N) composite

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The emerging oscillatory pressure sintering technology is used to prepare high-performance Al2O3-Ti(C,N) ceramic tools for high-speed cutting. By recording the displacement during sintering, the sintering shrinkage rate of the Al2O3-Ti(C,N) composite was calculated, and the stress exponent n and sintering activation energy Q were calculated according to creep theory to determine the densification mechanism. In addition, the evolution of phases, microstructure and hardness of the composite was also observed. Results show that during oscillatory pressure sintering process at 1400 °C and 1300 °C, the stress exponent of Al2O3-Ti(C,N) composite is around 2.2 and the sintering activation energy is 486 kJ mol−1, indicating that the densification mechanism is a diffusion-controlled grain boundary sliding of Al2O3 phase. Additionally, as the oscillatory pressure increases, the average grain size of the Al2O3 decreases and the Vickers hardness increases. Hardness achieves the highest 22.7 GPa when the median oscillatory pressure is 70 MPa at 1400 °C, which is 1 GPa higher than that of static pressure of 70 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Yu, W., Ming, W., An, Q., Chen, M.: Cutting performance and wear mechanism of honeycomb ceramic tools in interrupted cutting of nickel-based superalloys. Ceram. Int. 47, 18075–18083 (2021). https://doi.org/10.1016/j.ceramint.2021.03.123

    Article  CAS  Google Scholar 

  2. Zhang, M., Li, X., Zhang, M., **u, Z., Li, J.-G., Li, J., Sun, X.: Fabrication of a novel Al2O3-Ti(C0.7N0.3)-cBN composite with excellent performance in the turning of difficult-to-machine stellite alloys. Ceram. Int. 44, 12815–12824 (2018). https://doi.org/10.1016/j.ceramint.2018.04.088

    Article  CAS  Google Scholar 

  3. Kıvak, T., Sarıkaya, M., Yıldırım, Ç.V., Şirin, Ş: Study on turning performance of PVD TiN coated Al2O3+TiCN ceramic tool under cutting fluid reinforced by nano-sized solid particles. J. Manuf. Process. 56, 522–539 (2020). https://doi.org/10.1016/j.jmapro.2020.05.017

    Article  Google Scholar 

  4. Cui, E., Zhao, J., Wang, X., Song, S.: Cutting performance, failure mechanisms and tribological properties of GNPs reinforced Al2O3/Ti(C, N) ceramic tool in high speed turning of Inconel 718. Ceram. Int. 46, 18859–18867 (2020). https://doi.org/10.1016/j.ceramint.2020.04.206

    Article  CAS  Google Scholar 

  5. Feng, X.M., Lian, X.Q., Jiang, M.X., He, Y.N.: Microstructure and mechanical properties of in situ Al2O3- Ti(C, N) composites. Adv. Mater. Res. 239–242, 1243–1247 (2011). https://doi.org/10.4028/www.scientific.net/AMR.239-242.1243

    Article  CAS  Google Scholar 

  6. Yang, H., Shang, F., Gao, L.: Microstructure and mechanical properties of gas pressure sintered Al2O3/TiCN composite. Ceram. Int. 33, 1521–1524 (2007). https://doi.org/10.1016/j.ceramint.2006.07.001

    Article  CAS  Google Scholar 

  7. Cheng, M., Liu, H., Zhao, B., Huang, C., Yao, P., Wang, B.: Mechanical properties of two types of Al2O3/TiC ceramic cutting tool material at room and elevated temperatures. Ceram. Int. 43, 13869–13874 (2017). https://doi.org/10.1016/j.ceramint.2017.07.110

    Article  CAS  Google Scholar 

  8. Bertolete, M., Barbosa, P.A., de Rossi, W., Fredericci, C., Machado, I.F.: Mechanical characterisation and machining evaluation of ceramic cutting tools functionally graded with six layers. Ceram. Int. 46, 15137–15145 (2020). https://doi.org/10.1016/j.ceramint.2020.03.048

    Article  CAS  Google Scholar 

  9. Cheng, Y., Zhang, Y., Wan, T., Yin, Z., Wang, J.: Mechanical properties and toughening mechanisms of graphene platelets reinforced Al2O3/TiC composite ceramic tool materials by microwave sintering. Mater. Sci. Eng. A 680, 190–196 (2017). https://doi.org/10.1016/j.msea.2016.10.100

    Article  CAS  Google Scholar 

  10. **e, Z., Li, S., An, L., Franks, G.: A novel oscillatory pressure-assisted hot pressing for preparation of high-performance ceramics. J. Am. Ceram. Soc. 97, 1012–1015 (2014). https://doi.org/10.1111/jace.12869

    Article  CAS  Google Scholar 

  11. Han, Y., Li, S., Zhu, T., **e, Z.: An oscillatory pressure sintering of zirconia powder: rapid densification with limited grain growth. J. Am. Ceram. Soc. 100, 2774–2780 (2017). https://doi.org/10.1111/jace.14953

    Article  CAS  Google Scholar 

  12. Li, S., **e, Z., Xue, W., Luo, X., An, L., Franks, G.: Sintering of high-performance silicon nitride ceramics under vibratory pressure. J. Am. Ceram. Soc. 98, 698–701 (2015). https://doi.org/10.1111/jace.13486

    Article  CAS  Google Scholar 

  13. Zhu, T., **e, Z., Han, Y., Li, S., Li, Y., An, D., Luo, X.: A novel approach to improve flexural strength of Al2O3-20wt% ZrO2 composites by oscillatory pressure sintering. J. Am. Ceram. Soc. 101, 1397–1401 (2018). https://doi.org/10.1111/jace.15341

    Article  CAS  Google Scholar 

  14. Gao, K., Xu, Y., Tang, G., Fan, L., Zhang, R., An, L.: Oscillating pressure sintering of W-Ni–Fe refractory alloy. J. Alloy. Compd. 805, 789–793 (2019). https://doi.org/10.1016/j.jallcom.2019.07.141

    Article  CAS  Google Scholar 

  15. Li, S., **e, Z., An, D., Wei, C., Wang, P., Zhou, L.: Zirconia ceramics consolidated by oscillatory pressure sintering and subsequent carburization. Ceram. Int. 45, 9038–9042 (2019). https://doi.org/10.1016/j.ceramint.2019.01.239

    Article  CAS  Google Scholar 

  16. Fan, J., Yuan, Y., Li, J., Liu, J., Zhao, K., Liu, D., An, L.: Densification and grain growth in oscillatory pressure sintering of alumina toughened zirconia ceramic composites. J. Alloys Compd. 845, 155644 (2020). https://doi.org/10.1016/j.jallcom.2020.155644

    Article  CAS  Google Scholar 

  17. Feng, B., Wang, Z., Fan, Y., Gu, J., Zhang, Y.: Creep deformation behavior during densification of ZrB2-SiBCN ceramics with ZrO2 additive. J. Adv. Ceram. 9, 544–557 (2020). https://doi.org/10.1007/s40145-020-0393-6

    Article  CAS  Google Scholar 

  18. Ting, C.-J., Lu, H.-Y.: Hot-pressing of magnesium aluminate spinel—I. Kinetics and densification mechanism. Acta Mater. 47, 817–830 (1999)

    Article  CAS  Google Scholar 

  19. Ting, C.-J., Lu, H.-Y.: Hot-pressing of magnesium aluminate spinel—II. Microstructure development. Acta Mater. 47, 831–840 (1999)

    Article  CAS  Google Scholar 

  20. Bernard-Granger, G., Guizard, C.: Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification. Acta Mater. 55, 3493–3504 (2007). https://doi.org/10.1016/j.actamat.2007.01.048

    Article  CAS  Google Scholar 

  21. Bernard-Granger, G., Guizard, C., Surblé, S., Baldinozzi, G., Addad, A.: Spark plasma sintering of a commercially available granulated zirconia powder—II. Microstructure after sintering and ionic conductivity. Acta Mater. 56, 4658–4672 (2008). https://doi.org/10.1016/j.actamat.2008.05.031

    Article  CAS  Google Scholar 

  22. Bernard-Granger, G., Addad, A., Fantozzi, G., Bonnefont, G., Guizard, C., Vernat, D.: Spark plasma sintering of a commercially available granulated zirconia powder: comparison with hot-pressing. Acta Mater. 58, 3390–3399 (2010). https://doi.org/10.1016/j.actamat.2010.02.013

    Article  CAS  Google Scholar 

  23. Zhang, Y., Song, A., Ma, D., Zhang, X., Ma, M., Liu, R.: Sintering characteristics and grain growth behavior of MgO nanopowders by spark plasma sintering. J. Alloy. Compd. 608, 304–310 (2014). https://doi.org/10.1016/j.jallcom.2014.04.148

    Article  CAS  Google Scholar 

  24. Gendre, M., Maître, A., Trolliard, G.: A study of the densification mechanisms during spark plasma sintering of zirconium (oxy-)carbide powders. Acta Mater. 58, 2598–2609 (2010). https://doi.org/10.1016/j.actamat.2009.12.046

    Article  CAS  Google Scholar 

  25. Santanach, J.G., Weibel, A., Estournès, C., Yang, Q., Laurent, C., Peigney, A.: Spark plasma sintering of alumina: study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth. Acta Mater. 59, 1400–1408 (2011). https://doi.org/10.1016/j.actamat.2010.11.002

    Article  CAS  Google Scholar 

  26. Liu, G., Li, R., Yuan, T., Zhang, M., Zeng, F.: Spark plasma sintering of pure TiCN: densification mechanism, grain growth and mechanical properties. Int. J. Refract. Metal Hard Mater. 66, 68–75 (2017). https://doi.org/10.1016/j.ijrmhm.2017.02.008

    Article  CAS  Google Scholar 

  27. Vieira, J.M., Brook, R.J.: Hot-pressing of high-purity magnesium oxide. J. Am. Ceram. Soc. 67, 450–454 (1984). https://doi.org/10.1111/j.1151-2916.1984.tb19632.x

    Article  CAS  Google Scholar 

  28. Antou, G., Guyot, P., Pradeilles, N., Vandenhende, M., Maître, A.: Identification of densification mechanisms of pressure-assisted sintering: application to hot pressing and spark plasma sintering of alumina. J. Mater. Sci. 50, 2327–2336 (2015). https://doi.org/10.1007/s10853-014-8804-0

    Article  CAS  Google Scholar 

  29. Vakifahmetoglu, C., Karacasulu, L.: Cold sintering of ceramics and glasses: a review. Curr. Opin. Solid State Mater. Sci. 24, 100807 (2020). https://doi.org/10.1016/j.cossms.2020.100807

    Article  CAS  Google Scholar 

  30. Galotta, A., Sglavo, V.M.: The cold sintering process: a review on processing features, densification mechanisms and perspectives. J. Eur. Ceram. Soc. 41, 1–17 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.09.024

    Article  CAS  Google Scholar 

  31. Zhang, X., Zabihi, F., **ong, H., Eslamian, M., Hou, C., Zhu, M., Wang, H., Zhang, H.: Highly efficient flexible perovskite solar cells made via ultrasonic vibration assisted room temperature cold sintering. Chem. Eng. J. 394, 124887 (2020). https://doi.org/10.1016/j.cej.2020.124887

    Article  CAS  Google Scholar 

  32. Kang, S., Zhao, X., Guo, J., Liang, J., Sun, J., Yang, Y., Yang, L., Liao, R., Randall, C.: Thermal-assisted cold sintering study of Al2O3 ceramics: enabled with a soluble γ-Al2O3 intermediate phase. J. Eur. Ceram. Soc. 43, 478–485 (2023). https://doi.org/10.1016/j.jeurceramsoc.2022.10.039

    Article  CAS  Google Scholar 

  33. Lai, Q., Chen, J., Chang, F., Pei, J., Liang, Y., Chen, X., Feng, Q., Cen, Z., Luo, N.: Cold sintering process assisted sintering for 8YSZ ceramic: a way of achieving high density and electrical conductivity at a reduced sintering temperature. Ceram. Int. 49, 14744–14749 (2023). https://doi.org/10.1016/j.ceramint.2023.01.070

    Article  CAS  Google Scholar 

  34. Zhang, J., Zhu, T., Cheng, Y., Sang, S., Li, Y., An, D., **e, Z.: Fabrication and mechanical properties of ZrO2-Al2O3-SiC(w) composites by oscillatory pressure sintering. Ceram. Int. 46, 25719–25725 (2020). https://doi.org/10.1016/j.ceramint.2020.07.048

    Article  CAS  Google Scholar 

  35. Li, J., Fan, J., Yuan, Y., Liu, J., Zhao, K., Liu, D., **e, Z., An, L.: Effect of oscillatory pressure on the sintering behavior of ZrO2 ceramic. Ceram. Int. 46, 13240–13243 (2020). https://doi.org/10.1016/j.ceramint.2020.02.100

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Department of Henan Province, China [grant numbers 212102210578, 222102230057, 232102230135].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Mengwen Zhang]; Methodology: [BinYang Jiang], [Lutong Yang], [Na Cao], [Zhaosheng Li]; Formal analysis and investigation: [BinYang Jiang], [Lutong Yang], [Na Cao] [Zhaosheng Li]; Writing—original draft preparation: [BinYang Jiang], [Lutong Yang]; Writing-review and editing: [Mengwen Zhang], [Lei Fan], [Shoulei Yang]; funding acquisition: [Mengwen Zhang]; Resources: [Lei Fan], [Shoulei Yang]; Supervision: [Mengwen Zhang], [Lei Fan].

Corresponding author

Correspondence to Mengwen Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Jiang, B., Yang, L. et al. Densification mechanism and mechanical properties of oscillatory pressure sintered Al2O3-Ti(C,N) composite. J Aust Ceram Soc 59, 1231–1239 (2023). https://doi.org/10.1007/s41779-023-00903-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00903-w

Keywords

Navigation