Log in

The role of ZnO as an additive on the mechanical properties of zirconia-mullite composites

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

This study investigates the effects of ZnO addition on the physicochemical and mechanical properties of zirconia-mullite composites. Zirconia-mullite composites containing varying amounts of ZnO (0–15 wt.%) were fabricated by sintering the mechanically activated gibbsite-zircon-kaolinite mixtures at 1550 °C. The results demonstrated the positive effect of adding up to 5 wt.% ZnO on optimizing the phase composition, surface characteristics, and mechanical properties of the fabricated composites. The stabilization of the tetragonal zirconia phase and the formation of the acicular mullite phase were positively affected by the presence of ZnO, as determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. The composites' flexural strength and diametral tensile strength (DTS) were increased from 65 to 155 MPa and 42 to 124 MPa, respectively, due to the stabilization of monoclinic zirconia and the formation of acicular mullite. Furthermore, a fracture toughness and Vickers microhardness of 4.67 ± 0.97 MPa.m1/2 and 8 GPa were achieved in the composite containing 5 wt.% ZnO, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, mollazadeh.b@um.ac.ir.

References

  1. da Silva, V.J., da Silva, M.F., Gonçalves, W.P., de Menezes, R.R., de Araújo Neves, G., de Lucena Lira, H., de Lima Santana, L.N.: Porous mullite blocks with compositions containing kaolin and alumina waste. Ceram. Int. 42, 15471–15478 (2016). https://doi.org/10.1016/j.ceramint.2016.06.199

    Article  CAS  Google Scholar 

  2. Sahraoui, T., Belhouchet, H., Heraiz, M., Brihi, N., Guermat, A.: The effects of mechanical activation on the sintering of mullite produced from kaolin and aluminum powder. Ceram. Int. 42, 12185–12193 (2016). https://doi.org/10.1016/j.ceramint.2016.04.157

    Article  CAS  Google Scholar 

  3. Schneider, H., Schreuer, J., Hildmann, B.: Structure and properties of mullite-A review. J. Eur. Ceram. Soc. 28, 329–344 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.03.017

    Article  CAS  Google Scholar 

  4. Sedmale, G., Steins, I., Zalite, I., Mezinskis, G.: Microstructure and properties of mullite – ZrO 2 ceramics with silicon nitride additive prepared by spark plasma sintering. Ceram. Int. 42, 3745–3750 (2016). https://doi.org/10.1016/j.ceramint.2015.10.112

    Article  CAS  Google Scholar 

  5. Rezaie, H.R., Rainforth, W.M., Lee, W.E.: Fabrication and mechanical properties of SiC platelet reinforced mullite matrix. Composites 19, 1777–1787 (1999)

    CAS  Google Scholar 

  6. Namiranian, A., Kalantar, M.: Mullite synthesis and formation from kyanite concentrates in different conditions of heat treatment and particle size, Iran. J. Mater. Sci. Eng. 8, 29–36 (2011)

    CAS  Google Scholar 

  7. Lin, Y.-J., Tsang, C.-P.: Fabrication of mullite/SiC and mullite/zirconia/SiC composites by ‘dual’ in-situ reaction syntheses. Mater. Sci. Eng. A. 344, 7 (2003)

    Article  Google Scholar 

  8. Khor, K.A., Yu, L.G., Li, Y., Dong, Z.L., Munir, Z.A.: Spark plasma reaction sintering of ZrO 2 - mullite composites from plasma spheroidized zircon / alumina powders. Mater. Sci. Eng. A. 339, 286–296 (2003)

    Article  Google Scholar 

  9. Aksay, I.A., Dabbs, D.M., Sarikaya, M.: Mullite for structural, electronic, and optical applications. J. Am. Ceram. Soc. 74, 2343–2358 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06768.x

    Article  CAS  Google Scholar 

  10. Awaad, M., Zawrah, M.F., Khalil, N.M.: In situ formation of zirconia-alumina-spinel-mullite ceramic composites. Ceram. Int. 34, 429–434 (2008). https://doi.org/10.1016/j.ceramint.2006.11.002

    Article  CAS  Google Scholar 

  11. Prusty, S., Mishra, D.K., Mohapatra, B.K., Singh, S.K.: Effect of MgO in the microstructure formation of zirconia mullite composites from sillimanite and zircon. Ceram. Int. 38, 2363–2368 (2012). https://doi.org/10.1016/j.ceramint.2011.10.089

    Article  CAS  Google Scholar 

  12. H.O. Pierson.: CVD processes and equipment. In: Handb. Chem. Vap. Depos., pp. 68–83 (1999). https://doi.org/10.1016/B978-081551432-9.50006-1

  13. Garridoa, L.B., Agliettib, E.F.: Reaction-sintered mullite–zirconia composites by colloidal processing of alumina–zircon–CeO2 mixtures. Mater. Sci. Eng. A. 369, 8 (2004)

    Google Scholar 

  14. Li, S., Zhao, X., Hou, G., Deng, W., An, Y., Zhou, H., Chen, J.: Thermomechanical properties and thermal cycle resistance of plasma-sprayed mullite coating and mullite/zirconia composite coatings. Ceram. Int. 42, 17447–17455 (2016). https://doi.org/10.1016/j.ceramint.2016.08.049

    Article  CAS  Google Scholar 

  15. Rendtorff, N.M., Suárez, G., Sakka, Y., Aglietti, E.F.: Dense mullite zirconia composites obtained from the reaction sintering of milled stoichiometric alumina zircon mixtures by SPS. Ceram. Int. 40, 4461–4470 (2014). https://doi.org/10.1016/j.ceramint.2013.08.119

    Article  CAS  Google Scholar 

  16. Mileiko, S.T., Kolchin, A.A., Novokhatskaya, N.I., Prokopenko, N.A., Shakhlevich, O.F.: Mullite-zirconia fi bres produced by internal crystallization method : Microstructure and strength properties. Compos. Part A 112, 405–414 (2018). https://doi.org/10.1016/j.compositesa.2018.06.022

    Article  CAS  Google Scholar 

  17. Garrido, L.B., Aglietti, E.F., Martorello, L., Camerucci, M.A., Cavalieri, A.L.: Hardness and fracture toughness of mullite – zirconia composites obtained by slip casting. Mater. Sci. Eng. A. 419, 290–296 (2006). https://doi.org/10.1016/j.msea.2006.01.035

    Article  CAS  Google Scholar 

  18. Liu, P., Li, Z., **ao, P., Luo, H., Jiang, T.: Microstructure and mechanical properties of in-situ grown mullite toughened 3Y-TZP zirconia ceramics fabricated by gelcasting. Ceram. Int. 44, 1394–1403 (2017). https://doi.org/10.1016/j.ceramint.2017.09.151

    Article  CAS  Google Scholar 

  19. Barfi Sistani, P., Mollazadeh, S., Kiani Rashid, A.: Microstructural and diametral tensile strength evaluation of the zirconia-mullite composite. Ceram. Int. 45, 7127–7136 (2019). https://doi.org/10.1016/j.ceramint.2018.12.218

  20. Barfi Sistani, P., MollazadehBeidokhti, S., Kiani-Rashid, A.: Improving the microstructural and mechanical properties of in-situ zirconia-mullite composites by optimizing the simultaneous effect of mechanical activation and additives. Ceram. Int. 46, 1472–1486 (2020). https://doi.org/10.1016/j.ceramint.2019.09.113

    Article  CAS  Google Scholar 

  21. Fabris, S., Paxton, A.T., Finnis, M.W.: A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater. 50, 5171–5178 (2002). https://doi.org/10.1016/S1359-6454(02)00385-3

    Article  CAS  Google Scholar 

  22. Chen, G., Liu, X.: Sintering, crystallization and properties of MgO – Al2O3 – SiO2 system glass-ceramics containing ZnO. J. Alloys Compd. 431, 282–286 (2007). https://doi.org/10.1016/j.jallcom.2006.05.060

    Article  CAS  Google Scholar 

  23. Zhang, R., Yin, P.G., Wang, N., Guo, L.: Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 11, 865–869 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.10.016

    Article  CAS  Google Scholar 

  24. Philippi, C., Mazdiyasni, K.: Infrared and Raman spectra of Zirconia polymorphs. J. Am. Ceram. Soc. 54, 254–258 (1971). https://doi.org/10.1016/0584-8539(73)80172-2

    Article  Google Scholar 

  25. Bost, N., Duraipandian, S., Guimbretière, G., Poirier, J.: Raman spectra of synthetic and natural mullite. Vib. Spectrosc. 82, 50–52 (2016). https://doi.org/10.1016/j.vibspec.2015.11.003

    Article  CAS  Google Scholar 

  26. Tuan, W.H., Chen, R.Z., Wang, T.C., Cheng, C.H., Kuo, P.S.: Mechanical properties of Al2O3/ZrO2 composites. J. Eur. Ceram. Soc. 22, 2827–2833 (2002). https://doi.org/10.1016/S0955-2219(02)00043-2

    Article  CAS  Google Scholar 

  27. Gilbert, A., Kokini, K., Sankarasubramanian, S.: Thermal fracture of zirconia-mullite composite thermal barrier coatings under thermal shock: An experimental study. Surf. Coatings Technol. 202, 2152–2161 (2008). https://doi.org/10.1016/j.surfcoat.2007.09.001

    Article  CAS  Google Scholar 

  28. Ewais, E.M.M., Besisa, D.H.A., Zaki, Z.I., Kandil, A.E.H.T.: Tailoring of functionally graded zirconia-mullite/alumina ceramics. J. Eur. Ceram. Soc. 32, 1561–1573 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.01.016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Mollazadeh Beidokhti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sistani, P.B., Beidokhti, S.M. & Rashid, A.K. The role of ZnO as an additive on the mechanical properties of zirconia-mullite composites. J Aust Ceram Soc 59, 739–749 (2023). https://doi.org/10.1007/s41779-023-00870-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00870-2

Keywords

Navigation