Log in

Ion-exchange diffusion kinetics and compressive stress analysis of float soda lime silicate glasses

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The relationship between diffusion kinetics (interdiffusion coefficients, effective diffusion coefficients and activation energy) of the ion-exchanged float soda lime silicate (SLS) glass in the air and tin surfaces were determined by the Boltzmann-Matano and Green’s function. The compressive stresses generated by ion exchange were discussed from a different viewpoint that compressive stress depth profile gradient (CSG) measurements were performed on both surfaces and analysed in symmetrical depths using FSM 6000LE surface stress metre. This method is easy, practical and non-destructive compared to other methods. Thus, this technical method will importantly result in distinguishing the compressive stress difference of symmetrical depths between air and tin surfaces. The interrelationship among the concentration profiles, CSG and diffusion kinetics of ion-exchanged glasses were evaluated. The results showed that the K+ ion concentration was increased with temperature and time and was always higher on the air surface. Results found will provide a simple guideline for both the process control and the flatness of large-area glasses in strengthening of ion-exchanged SLS float glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mazzoldi, P., Carturan, S., Quaranta, A., Sada, C., Sglavo,  V. M.: Ion exchange process: History, evolution and applications. Rivista del Nuovo Cimento. 36(9), 397–460 (2013)

  2. Gy, R.: Ion exchange for glass strengthening. Mater. Sci. Eng. B. 149(2), 159–165 (2008)

    Article  CAS  Google Scholar 

  3. Varshneya, A.K.: Chemical strengthening of glass: lessons learned and yet to be learned. Int. J. Appl. Glas. Sci. 1(2), 131–142 (2010)

    Article  CAS  Google Scholar 

  4. Karlsson, S., Jonson, B., Stålhandske, C.: The technology of chemical glass strengthening-a review. Glass Technol. 51(2), 41–54 (2010)

    CAS  Google Scholar 

  5. Sglavo, V.M., Green, D.J.: Flaw-insensitive ion-exchanged glass: II, production and mechanical performance. J. Am. Ceram. Soc. 84(8), 1832–1838 (2001)

    Article  CAS  Google Scholar 

  6. Varshneya, A.K., Mauro, J.C.: Fundamentals of Inorganic Glasses. Elsevier (2019)

  7. Jacoby, M.: New applications for glass emerge. Chem. Eng. News. 90(25), 34–36 (2012)

    Article  CAS  Google Scholar 

  8. Global Chemical Tempered Glass Market 2018 – 2023: By Manufacturers. Product Types, Application and Region (2019) Retrieved from https://reporte.us/global-chemical-tempered-glass-market/, (accessed 28 March 2019)

  9. Jiang, L., Guo, X., Li, X., Li, L., Zhang, G., Yan, Y.: Different K+–Na+ inter-diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass. Appl. Surf. Sci. 265, 889–894 (2013)

    Article  CAS  Google Scholar 

  10. Hasanuzzaman, M., Rafferty, A., Sajjia, M., Olabi, A. G.: Properties of glass materials. Reference Module in Materials Science and Materials Engineering. (2016)

  11. Nascimento, M.L.F.: Brief history of the flat glass patent–sixty years of the float process. World Patent Inf. 38, 50–56 (2014)

    Article  Google Scholar 

  12. Kumar, R. V., & Buckett, J. (2017). Float Glass

  13. Gulati, S.T., Akcakaya, R., Varner, J.R.: Fracture behavior of tin vs. air side of float glass. Ceramic Transactions (USA). 122, 317–325 (2000)

    Google Scholar 

  14. Li, X., Jiang, L., Wang, Y., Mohagheghian, I., Dear, J.P., Li, L., Yan, Y.: Correlation between K+-Na+ diffusion coefficient and flexural strength of chemically tempered aluminosilicate glass. J. Non-Cryst. Solids. 471, 72–81 (2017)

    Article  CAS  Google Scholar 

  15. Karlsson, S., Wondraczek, L., Ali, S., Jonson, B.: Trends in effective diffusion coefficients for ion-exchange strengthening of soda-Lime-silicate Glasses. Frontiers in Materials. 4, 13 (2017)

    Article  Google Scholar 

  16. Macrelli, G.: Chemical Strengthening of Glass by Ion Exchange. Lecture notes - Workshop at the 2017 ICG annual meeting, Istanbul, Turkey (2017)

  17. Varshneya, A.K.: Kinetics of ion exchange in glasses. J. Non-Cryst. Solids. 19, 355–365 (1975)

    Article  CAS  Google Scholar 

  18. Shen, J., Green, D.J., Pantano, C.G.: Control of concentration profiles in two step ion exchanged glasses. Phys. Chem. Glasses. 44(4), 284–292 (2003)

    CAS  Google Scholar 

  19. Wu, X., Youngman, R.E., Dieckmann, R.: Sodium tracer diffusion and 11B NMR study of glasses of the type (Na2O) 0.17 (B2O3) x (SiO2) 0.83− x. J. Non-Cryst. Solids. 378, 168–176 (2013)

    Article  CAS  Google Scholar 

  20. Potuzak, M., Smedskjaer, M.M.: Alkali diffusivity in alkaline earth sodium boroaluminosilicate glasses. Solid State Ionics. 263, 95–98 (2014)

    Article  CAS  Google Scholar 

  21. Tyagi, V., Varshneya, A.K.: Measurement of progressive stress buildup during ion exchange in alkali aluminosilicate glass. J. Non-Cryst. Solids. 238(3), 186–192 (1998)

    Article  CAS  Google Scholar 

  22. ASTM C1422 / C1422M-20a: Standard Specification for Chemically Strengthened Flat Glass. ASTM International, West Conshohocken, PA (2020) www.astm.org

  23. Kishii, T.: Surface stress meters utilising the optical waveguide effect of chemically tempered glasses. Opt. Lasers Eng. 4(1), 25–38 (1983)

    Article  Google Scholar 

  24. Sglavo, V.M., Talimian, A., Ocsko, N.: Influence of salt bath calcium contamination on soda lime silicate glass chemical strengthening. J. Non-Cryst. Solids. 458, 121–128 (2017)

    Article  CAS  Google Scholar 

  25. Sieger, J.S.: Chemical characteristics of float glass surfaces. J. Non-Cryst. Solids. 19, 213–220 (1975)

    Article  CAS  Google Scholar 

  26. Erdem, İ., Guldiren, D., Aydin, S.: Chemical tempering of soda lime silicate glasses by ion exchange process for the improvement of surface and bulk mechanical strength. J. Non-Cryst. Solids. 473, 170–178 (2017)

    Article  CAS  Google Scholar 

  27. Güzel, A.S., Sarıgüzel, M., Yanık, M.C.Ö., Günay, E., Usta, M., Öztürk, Y.: Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange. J. Aust. Ceram. Soc. 56(1), 185–201 (2020)

    Article  CAS  Google Scholar 

  28. Shen, J., Green, D.J., Tressler, R.E., Shelleman, D.L.: Stress relaxation of a soda lime silicate glass below the glass transition temperature. J. Non-Cryst. Solids. 324(3), 277–288 (2003)

    Article  CAS  Google Scholar 

  29. Shen, J., Green, D.J.: Prediction of stress profiles in ion exchanged glasses. J. Non-Cryst. Solids. 344(1-2), 79–87 (2004)

    Article  CAS  Google Scholar 

  30. Macrelli, G., Varshneya, A.K., Mauro, J.C.: Simulation of glass network evolution during chemical strengthening: resolution of the subsurface compression maximum anomaly. J. Non-Cryst. Solids. 522, 119457 (2019)

    Article  CAS  Google Scholar 

  31. Ziemath, E.C., Saggioro, B.Z., Fossa, J.S.: Physical properties of silicate glasses doped with SnO2. J. Non-Cryst. Solids. 351(52-54), 3870–3878 (2005)

    Article  CAS  Google Scholar 

  32. Li, X., Jiang, L., Mohagheghian, I., Dear, J.P., Li, L., Yan, Y.: New insights into nanoindentation crack initiation in ion-exchanged sodium aluminosilicate glass. J. Am. Ceram. Soc. 101(7), 2930–2940 (2018)

    Article  CAS  Google Scholar 

  33. Li, X., Jiang, L., Zhang, X., Yan, Y.: Influence of residual compressive stress on nanoindentation response of ion-exchanged aluminosilicate float glass on air and tin sides. J. Non-Cryst. Solids. 385, 1–8 (2014)

    Article  CAS  Google Scholar 

  34. Sglavo, V.M., Quaranta, A., Allodi, V., Mariotto, G.: Analysis of the surface structure of soda lime silicate glass after chemical strengthening in different KNO3 salt baths. J. Non-Cryst. Solids. 401, 105–109 (2014)

    Article  CAS  Google Scholar 

  35. Koike, A., Akiba, S., Sakagami, T., Hayashi, K., Ito, S.: Difference of cracking behavior due to Vickers indentation between physically and chemically tempered glasses. J. Non-Cryst. Solids. 358(24), 3438–3444 (2012)

    Article  CAS  Google Scholar 

  36. Sinton, C.W., LaCourse, W.C., O’Connell, M.J.: Variations in K+–Na+ ion exchange depth in commercial and experimental float glass compositions. Mater. Res. Bull. 34(14-15), 2351–2359 (1999)

    Article  CAS  Google Scholar 

  37. Kumar, R. V., Buckett, J.: Float Glass. (2017)

  38. Pilkington, L.A.B.: Review lecture: the float glass process. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 314(1516), 1–25 (1969)

    CAS  Google Scholar 

  39. Howell, J.A., Hellmann, J.R., Muhlstein, C.L.: Nanomechanical properties of commercial float glass. J. Non-Cryst. Solids. 354(17), 1891–1899 (2008)

    Article  CAS  Google Scholar 

  40. Lin, J., Cai, L., Tian, Y., Han, Z., **ang, Z.: Study on bending deformation of ultra-thin floating glass plate. J. Non-Cryst. Solids. 544, 120172 (2020)

    Article  CAS  Google Scholar 

  41. Frischat, G.H., Müller-Fildebrandt, C., Moseler, D., Heide, G.: On the origin of the tin hump in several float glasses. J. Non-Cryst. Solids. 283(1-3), 246–249 (2001)

    Article  CAS  Google Scholar 

  42. Schaeffer, H.A.: Transport phenomena and diffusion anomalies in glass. Materiały Ceramiczne. 64(2), 156–161 (2012)

    CAS  Google Scholar 

  43. Zhang, Q., Chen, Z., Li, Z.: Simulation of tin penetration in the float glass process (float glass tin penetration). Appl. Therm. Eng. 31(6-7), 1272–1278 (2011)

    Article  CAS  Google Scholar 

  44. Krohn, M.H., Hellmann, J.R., Mahieu, B., Pantano, C.G.: Effect of tin-oxide on the physical properties of soda-lime–silica glass. J. Non-Cryst. Solids. 351(6-7), 455–465 (2005)

    Article  CAS  Google Scholar 

  45. Hayashi, Y., Fukuda, Y., Kudo, M.: Investigation on changes in surface composition of float glass––mechanisms and effects on the mechanical properties. Surf. Sci. 507, 872–876 (2002)

    Article  Google Scholar 

  46. Krzyzak, M., Apitz, D., Brueckner, M., Joerdens, T., & Walther, M.: Asymmetrically structured thin glass sheet that is chemically strengthened on both surface sides, method for its manufacture as well as use of same. U.S. Patent Application No. 15/208,942. (2017)

  47. Kreski, P. K.: Strengthened glass and methods for making using differential time. U.S. Patent Application No. 14/046,936. (2014)

  48. Navet, B., Boulanger, P.: Glass substrate for chemical strengthening and method for chemically strengthening with controlled curvature. U.S. Patent Application No. 16/061,677. (2018)

  49. Varshneya, A. K., Kreski, P. K.: Strengthened glass and methods for making using heat treatment. U.S. Patent No. 9,796,621. Washington, DC: U.S. Patent and Trademark Office. (2017)

  50. Nordberg, M.E., Mochel, E.L., Garfinkel, H.M., Olcott, J.S.: Strengthening by ion exchange. J. Am. Ceram. Soc. 47(5), 215–219 (1964)

    Article  CAS  Google Scholar 

  51. Crank, J.: The Mathematics of Diffusion, 2nd edn. Oxford University Press, Oxford (1975)

  52. Karlsson, S., Jonson, B., Sundberg, P., Stålhandske, C.: Surface analysis of float glass using surface ablation cell (SAC). Part 2. Determination of the diffusion characteristics of K+–Na+ ion exchange. Glass Technology-European Journal of Glass Science and Technology Part A. 51(2), 55–62 (2010)

    CAS  Google Scholar 

  53. Karlsson, S., Ali, S., & Strand, M.: Chemical strengthening of flat glass by vapour deposition and in-line alkali metal ion exchange. (2014).

  54. Leboeuf, V., Blondeau, J.P., Meneses, D.D.S., Véron, O.: Potassium ionic exchange in glasses for mechanical property improvement. J. Non-Cryst. Solids. 377, 60–65 (2013)

    Article  CAS  Google Scholar 

  55. Saggioro, B.Z., Ziemath, E.C.: Changes of physical properties of glass surfaces exposed to KNO3 vapors. J. Non-Cryst. Solids. 352(26-27), 2783–2790 (2006)

    Article  CAS  Google Scholar 

  56. Barrer, R.M.: Diffusion in solids, vol. 1963, p. 203. PG Shewmon, McGraw-Hill, New York (1964)

  57. Frischat, G. H.: Ionic diffusion in oxide glasses. Trans Tech Publications (Switzerland). (1975)

  58. Ragoen, C., Sen, S., Lambricht, T., Godet, S.: Effect of Al2O3 content on the mechanical and interdiffusional properties of ion-exchanged Na-aluminosilicate glasses. J. Non-Cryst. Solids. 458, 129–136 (2017)

    Article  CAS  Google Scholar 

  59. Guo-Yuan, Z., Jia-Cheng, L., Li-**n, S., Tao, Z.: Simulation on potassium ion concentration profile of engineered stress profile glass by FDTD Method. (2018)

Download references

Acknowledgements

Many thanks to Esin Günay, Meryem Sarigüzel, Melis Can Özdemir Yanik and Bilal Alcan for their contributions to the experimental studies from the TUBITAK Marmara Research Center, Materials Institute. The authors of this study are grateful to the Scientific & Technological Research Council of Turkey (TUBITAK) for the financial support under the project entitled and numbered as “Third-Generation Glass Toughening: Ultra Strong Sheet Glass For Large-Area Applications Through Super-Efficient Side-Selective Ion Exchange-215M127”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Öztürk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güzel, A.S., Usta, M. & Öztürk, Y. Ion-exchange diffusion kinetics and compressive stress analysis of float soda lime silicate glasses. J Aust Ceram Soc 57, 1331–1342 (2021). https://doi.org/10.1007/s41779-021-00632-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00632-y

Keywords

Navigation