Log in

A Review of El Niño Southern Oscillation Linkage to Strong Volcanic Eruptions and Post-Volcanic Winter Warming

  • Review Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Understanding the influence of volcanism on ENSO and associated climatic impacts is of great scientific and social importance. Although many studies on the volcano–ENSO nexus are available, a thorough review of ENSO sensitivity to explosive eruptions is still missing. Therefore, this study aims to provide an in-depth assessment of the ENSO response to volcanism. Most past studies suggest an emerging consensus in models, with the vast majority showing an El Niño-like SST response during the eruption year and a La Niña-like response a few years later. RCP8.5-based climate model projections also suggest strong El Niño conditions and significant monsoonal rainfall reduction following strong tropical volcanism. However, some studies involving climate reconstructions and model simulations still raise concerns about the ENSO–volcano link and suggest a weak ENSO response to volcanism. This happens because ENSO response to volcanism seems very sensitive to reconstruction methods, ENSO preconditioning, eruption timing, position and amplitude. We noticed that some response mechanisms are still unclear, for instance, how the tropical volcanic forcing with nearly uniform radiative cooling projects onto ENSO when coincidental ENSO events are underway. Moreover, there are very less observational and proxy records for assessing the extratropical volcanism impact on ENSO. Nevertheless, model-based studies suggest that Northern (Southern) Hemispheric extratropical eruptions may lead to an El Niño (La Niña)-like response. We further noticed that the origin of post-eruption winter warming is still elusive; however, recent findings suggest that the large-scale circulation changes concurrently occurring during volcanism are the potential source of high-latitude winter warming. Existing uncertainties in the simulated ENSO response to volcanism could be reduced by considering a synchronized modeling approach with large ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams JB, Mann ME, Ammann CM (2003) Proxy evidence for an El Niño-like response to volcanic forcing. Nature 426(6964):274–278. https://doi.org/10.1038/nature02101

    Article  Google Scholar 

  • Anchukaitis KJ, Buckley BM, Cook ER, Cook BI, D’Arrigo RD, Ammann CM (2010) Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys Res Lett. https://doi.org/10.1029/2010GL044843

    Article  Google Scholar 

  • Anchukaitis KJ, Breitenmoser P, Briffa KR, Buchwal A, Büntgen U, Cook ER et al (2012) Tree rings and volcanic cooling. Nat Geosci 5:836. https://doi.org/10.1038/ngeo1645

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  • Atwood, A. R. (2015). Mechanisms of tropical Pacific climate change during the Holocene. University of Washington.

  • Bader J, Jungclaus J, Krivova N, Lorenz S, Maycock A, Raddatz T, Claussen M (2020) Global temperature modes shed light on the Holocene temperature conundrum. Nat Commun 11(1):1–8

    Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97(3):163–172. https://doi.org/10.1175/1520-0493(1969)097%3c0163:ATFTEP%3e2.3.CO;2

    Article  Google Scholar 

  • Braganza K, Gergis JL, Power SB, Risbey JS, Fowler AM (2009) A multiproxy index of the El Niño-Southern oscillation, A.D. 1525–1982. J Geophys Res Atmos 114(5):1–17. https://doi.org/10.1029/2008JD010896

    Article  Google Scholar 

  • Brönnimann S, Xoplaki E, Casty C, Pauling A, Luterbacher J (2007) ENSO influence on Europe during the last centuries. Clim Dyn 28(2–3):181–197

    Google Scholar 

  • Bulić IH, Kucharski F (2012) Delayed ENSO impact on spring precipitation over North/Atlantic European region. Clim Dyn 38(11–12):2593–2612

    Google Scholar 

  • Büntgen U, Wacker L, Nicolussi K, Sigl M, Güttler D, Tegel W, Krusic PJ, Esper J (2014) Extraterrestrial confirmation of tree-ring dating. Nature Clim Change 4(6):404–405

    Google Scholar 

  • Butler AH, Polvani LM, Deser C (2014) Separating the stratospheric and tropospheric pathways of El Niño-Southern oscillation teleconnections. Environ Res Lett 9:024014. https://doi.org/10.1088/1748-9326/9/2/024014

    Article  Google Scholar 

  • Chai J, Liu F, **ng C, Wang B, Gao C, Liu J, Chen D (2020) A robust equatorial Pacific westerly response to tropical volcanism in multiple models. Clim Dyn 55(11):3413–3429

    Google Scholar 

  • Christiansen B (2008) Volcanic eruptions, large-scale modes in the Northern Hemisphere, and the El Niño-Southern oscillation. J Clim 21(5):910–922. https://doi.org/10.1175/2007JCLI1657.1

    Article  Google Scholar 

  • Church JA, White NJ, Arblaster JM (2005) Significant decadal scale impact of volcanic eruptions on sea level and ocean heat content. Nature. https://doi.org/10.1038/nature04237

    Article  Google Scholar 

  • Chylek P, Folland C, Klett JD, Dubey MK (2020) CMIP5 climate models overestimate cooling by volcanic aerosols. Geophys Res Lett 47:87047. https://doi.org/10.1029/2020GL087047

    Article  Google Scholar 

  • Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196

    Google Scholar 

  • Collins M, An S-I, Cai W, Ganachaud A, Guilyardi E, ** F-F et al (2010) The impact of global warming on the tropical Pacific ocean and El Niño. Nat Geosci 3(6):391–397. https://doi.org/10.1038/ngeo868

    Article  Google Scholar 

  • Colose CM, LeGrande AN, Vuille M (2016) Hemispherically asymmetric volcanic forcing of tropical hydroclimate during the last millennium. Earth Sys Dyn 7(3):681–696. https://doi.org/10.5194/esd-7-681-2016

    Article  Google Scholar 

  • Cook, E. R., D’Arrigo, R. D., & Anchukaitis, K. J. (2008). ENSO reconstructions from long tree ring chronologies: Unifying the differences? Presented at special workshop, “Reconciling ENSO Chronologies for the Past 500 Years,” Moorea, French Polynesia, 2–3 April 2008.

  • Cook, E. R. (2000). Niño 3 index reconstruction. In International Tree-Ring Data Bank, IGBP PAGES/World Data Center for Paleoclimatology, Data Contribution Series #2000–052. Boulder CO: NOAA/NGDC.

  • Crowley TJ, Zielinski GA, Vinther B, Udisti R, Kreutz K, Cole-Dai J, Castellano E (2008) Volcanism and the little ice age. PAGES News 16(2):22–23. https://doi.org/10.1029/2002GL0166335.Hegerl

    Article  Google Scholar 

  • D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res Atmos. https://doi.org/10.1029/2005JD006352

    Article  Google Scholar 

  • Dee SG, Steiger NJ (2022) ENSO’s Response to volcanism in a data assimilation-based paleoclimate reconstruction over the common era. Paleoceanogr Paleoclimatol 37(3):4290

    Google Scholar 

  • Dee SG, Cobb KM, Emile-Geay J, Ault TR, Edwards RL, Cheng H, Charles CD (2020) No consistent ENSO response to volcanic forcing over the last millennium. Science 367:1477–1481. https://doi.org/10.1126/science.aax2000

    Article  Google Scholar 

  • Delworth TL, Ramaswamy V, Stenchikov GL (2005) The impact of aerosols on simulated ocean temperature and heat content in the 20th century. Geophys Res Lett 32:L24709

    Google Scholar 

  • Ding Y, Carton JA, Chepurin GA, Stenchikov G, Robock A, Sentman LT, Krasting JP (2014) Ocean response to volcanic eruptions in coupled model intercomparison project 5 simulations. J Geophys Res Oceans 119:5622–5637. https://doi.org/10.1002/2013JC009780

    Article  Google Scholar 

  • Dogar MM (2018) Impact of tropical volcanic eruptions on Hadley circulation using a high-resolution AGCM. Curr Sci 114(6):1284. https://www.jstor.org/stable/26797333

    Google Scholar 

  • Dogar MMA, Almazroui M (2022) Revisiting the strong and weak ENSO teleconnection impacts using a high-resolution atmospheric model. Atmos Environ 270:118866. https://doi.org/10.1016/j.atmosenv.2021.118866

    Article  Google Scholar 

  • Dogar MM, Sato T (2019) Regional climate response of middle Eastern, African, and South Asian monsoon regions to explosive volcanism and ENSO forcing. J Geophys Res Atmos 124(14):7580–7598. https://doi.org/10.1029/2019JD030358

    Article  Google Scholar 

  • Dogar MM, Kucharski F, Azharuddin S (2017a) Study of the global and regional climatic impacts of ENSO magnitude using SPEEDY AGCM. J Earth Syst Sci 126(2):1–21. https://doi.org/10.1007/s12040-017-0804-4

    Article  Google Scholar 

  • Dogar MM, Stenchikov G, Osipov S, Wyman B, Zhao M (2017b) Sensitivity of the regional climate in the middle East and North Africa to volcanic perturbations. J Geophys Res Atmos 122:7922–7948. https://doi.org/10.1002/2017JD026783

    Article  Google Scholar 

  • Dogar MM, Kucharski F, Sato T, Mehmood S, Ali S, Gong Z, Arraut J (2019) Towards understanding the global and regional climatic impacts of Modoki magnitude. Global Planet Chang 172:223–241. https://doi.org/10.1016/j.gloplacha.2018.10.004

    Article  Google Scholar 

  • Dogar MM, Sato T, Liu F (2020) Ocean sensitivity to periodic and constant volcanism. Sci Rep 10(1):1–15. https://doi.org/10.1038/s41598-019-57027-0

    Article  Google Scholar 

  • Dogar MMA, Shahid A (2018) Sensitivity of hadley circulation to volcanic radiative forcing. In: American Geophysical Union, Fall Meeting 2018, abstract #A53M-2672, vol 2018

  • Dogar, M. M. A., & Shahid, A. (2020). The Sensitivity of Ocean Temperature, Heat Content, Sea-Level Rise, and Atlantic Meridional Overturning Circulation to Periodic and Constant Volcanic Forcing. In Ocean Sciences Meeting 2020. AGU.

  • Dogar, M., & Stenchikov, G. L. (2013). Study of Ocean Response to Periodic and Constant Volcanic Radiative Forcing. 2013: GC11C-0999.

  • Dogar, M. M. A. (2020). Study of the regional climatic impacts of tropical explosive volcanism in the Middle East and North Africa region (Doctoral dissertation, 北海道大学).

  • Dong B-W, Sutton RT (2002) Adjustment of the coupled ocean-atmosphere system to a sudden change in the thermohaline circulation. Geophys Res Lett 29(15):181–184. https://doi.org/10.1029/2002GL015229

    Article  Google Scholar 

  • Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Niño-Southern oscillation (enso) variance by Atlantic ocean sea surface temperatures. Geophys Res Let 33:L08705

    Google Scholar 

  • Driscoll S, Bozzo A, Gray LJ, Robock A, Stenchikov GL (2012) Coupled model intercomparison project 5 (CMIP5) simulations of climate following volcanic eruptions. J Geophys Res Atmos. https://doi.org/10.1029/2012JD017607

    Article  Google Scholar 

  • Emile-Geay J, Seager R, Cane MA, Cook ER, Haug GH (2008) Volcanoes and ENSO over the past millennium. J Clim 21(13):3134–3148. https://doi.org/10.1175/2007JCLI1884.1

    Article  Google Scholar 

  • Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT (2013a) Estimating central equatorial Pacific SST variability over the past millennium. Part I: methodology and validation. J Clim 26(7):2302–2328. https://doi.org/10.1175/JCLI-D-11-00510.1

    Article  Google Scholar 

  • Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT (2013b) Estimating central equatorial Pacific SST variability over the past millennium. Part II: reconstructions and implications. J Clim 26(7):2329–2352. https://doi.org/10.1175/JCLI-D-11-00511.1

    Article  Google Scholar 

  • Evans MN, Cane MA, Schrag DP, Kaplan A, Linsley BK, Villalba R, Wellington GM (2001) Support for tropically driven Pacific decadal variability based on paleoproxy evidence. Geophys Res Lett 28(19):3689–3692

    Google Scholar 

  • Evans MN, Kaplan A, Cane MA (2002) Pacific sea surface temperature field reconstruction from coral δ18O data using reduced space objective analysis. Paleoceanography 17(1):1007. https://doi.org/10.1029/2000PA000590

    Article  Google Scholar 

  • Fadnavis S, Sabin TP, Roy C, Rowlinson M, Rap A, Vernier JP, Sioris CE (2019) Elevated aerosol layer over South Asia worsens the Indian droughts. Sci Rep 9(1):1–11

    Google Scholar 

  • Fadnavis S, Müller R, Chakraborty T, Sabin TP, Laakso A, Rap A, Tilmes S (2021) The role of tropical volcanic eruptions in exacerbating Indian droughts. Sci Rep 11(1):1–13

    Google Scholar 

  • Fasullo JT, Nerem RS, Hamlington B (2016) Is the detection of accelerated sea level rise imminent? Sci Rep 6(1):1–7

    Google Scholar 

  • Fasullo JT, Tomas R, Stevenson S, Otto-Bliesner B, Brady E, Wahl E (2017) The amplifying influence of increased ocean stratification on a future year without a summer. Nat Commun. https://doi.org/10.1038/s41467-017-01302-z

    Article  Google Scholar 

  • Fasullo JT, Otto-Bliesner BL, Stevenson S (2019) The influence of volcanic aerosol meridional structure on monsoon responses over the last millennium. Geophys Res Lett 46(21):12350–12359

    Google Scholar 

  • Fischer EM, Luterbacher J, Zorita E, Tett SFB, Casty C, Wanner H (2007) European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett. https://doi.org/10.1029/2006GL027992

    Article  Google Scholar 

  • Folland CK, Boucher O, Colman A, Parker DE (2018) Causes of irregularities in trends of global mean surface temperature since the late 19th century. Sci Adv 4:eaao5297. https://doi.org/10.1126/sciadv.aao5297

    Article  Google Scholar 

  • Fujiwara M, Hibino T, Mehta SK, Gray L, Mitchell D, Anstey J (2015) Global temperature response to the major volcanic eruptions in multiple reanalysis data sets. Atmos Chem Phys 15(23):13507–13518. https://doi.org/10.5194/acp-15-13507-2015

    Article  Google Scholar 

  • Fujiwara M, Martineau P, Wright JS (2020) Surface temperature response to the major volcanic eruptions in multiple reanalysis data sets. Atmos Chem Phys 20(1):345–374. https://doi.org/10.5194/acp-20-345-2020

    Article  Google Scholar 

  • Fyfe JC, Gillett NP, Zwiers FW (2013) Overestimated global warming over the past 20 years. Nat Clim Chang 3(9):767–769. https://doi.org/10.1038/nclimate1972

    Article  Google Scholar 

  • Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J Geophys Res Atmos 113(23):1–15. https://doi.org/10.1029/2008JD010239

    Article  Google Scholar 

  • Gautier E, Savarino J, Hoek J, Erbland J, Caillon N, Hattori S, Yoshida N, Albalat E, Albarede F, Farquhar J (2019) 2600-years of stratospheric volcanism through sulfate isotopes. Nat Commun 10(1):1–7

    Google Scholar 

  • Gleckler PJ, Wigley TML, Santer BD, Gregory JM, AchutaRao K, Taylor KE (2006) Krakatoa’s signature persists in the ocean. Nature 439(7077):675–675

    Google Scholar 

  • Graf H-F (1986) On the El-Niño/Southern Oscillation and Northern Hemispheric temperature.Gerlands Beitr. Geo-Phys 95:63–75

    Google Scholar 

  • Gregory JM, Andrews T, Good P, Mauritsen T, Forster PM (2016) Small global-mean cooling due to volcanic radiative forcing. Clim Dyn 47:3979–3991

    Google Scholar 

  • Handler P (1984) Possible association of stratospheric aerosols and El Niño type events. Geophys Res Lett 11:1121–1124. https://doi.org/10.1029/GL011i011p01121

    Article  Google Scholar 

  • Handler P (1986) Possible association between the climatic effects of stratospheric aerosols and sea surface temperatures in the eastern tropical Pacific ocean. J Climatol 6(1):31–41

    Google Scholar 

  • Handler P (1989) The effect of volcanic aerosols on global climate. J Volcanol Geoth Res 37(3–4):233–249

    Google Scholar 

  • Handler P, Andsager K (1994) El Niño, volcanism, and global climate. Hum Ecol 22(1):37–57

    Google Scholar 

  • Haywood JM, Jones A, Bellouin N, Stephenson D (2013) Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat Clim Chang 3:660–665. https://doi.org/10.1038/nclimate1857

    Article  Google Scholar 

  • Haywood JM, Jones A, Jones GS (2014) The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos Sci Lett 15:92–96. https://doi.org/10.1002/asl2.471

    Article  Google Scholar 

  • Hermanson L, Bilbao R, Dunstone N, Menegoz M, Ortega P, Pohlmann H, Robson JI, Smith DM, Strand G, Timmreck C, Yeager S, Danabasoglu G (2020) Robust multi-year climate impacts of volcanic eruptions in decadal prediction systems. JGR-A 125:e2019JD031739

    Google Scholar 

  • Hernández A et al (2020) Modes of climate variability: synthesis and review of proxy-based reconstructions through the holocene. Earth Sci Rev 209(2020):103286

    Google Scholar 

  • Highwood E-J, Stevenson DS (2003) Atmospheric impact of the 1783–1784 Laki eruption: part II. Climatic effect of sulphate aerosol. Atmos Chem Phys 3(4):1177–1189

    Google Scholar 

  • Iles CE, Hegerl GC (2014) The global precipitation response to volcanic eruptions in the CMIP5 models. Environ Res Lett 9:104012. https://doi.org/10.1088/1748-9326/9/10/104012

    Article  Google Scholar 

  • Ineson S, Scaife A (2009) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2(1):32–36

    Google Scholar 

  • Iwi AM, Hermanson L, Haines K, Sutton RT (2012) Mechanisms linking volcanic aerosols to the Atlantic meridional overturning circulation. J Clim 25(8):3039–3051

    Google Scholar 

  • Jones AC, Haywood JM, Jones A, Aquila V (2016) Sensitivity of volcanic aerosol dispersion to meteorological conditions: a pinatubo case study. J Geophys Res Atmos 121:6892–6908. https://doi.org/10.1002/2016JD025001

    Article  Google Scholar 

  • Joseph R, Zeng N (2011) Seasonally modulated tropical drought induced by volcanic aerosol. J Clim 24(8):2045–2060

    Google Scholar 

  • Joshi MM, Shine KP (2003) A GCM study of volcanic eruptions as a cause of increased stratospheric water vapour. J Clim 16:3525–3534

    Google Scholar 

  • Kang SM, Held IM, Frierson DMW, Zhao M (2008) The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J Clim 21(14):3521–3532. https://doi.org/10.1175/2007JCLI2146.1

    Article  Google Scholar 

  • Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett. https://doi.org/10.1029/2002GL015924

    Article  Google Scholar 

  • Khodri M, Izumo T, Vialard J, Janicot S, Cassou C, Lengaigne M et al (2017) Tropical explosive volcanic eruptions can trigger El Ninõ by cooling tropical Africa. Nat Commun 8(1):1–13. https://doi.org/10.1038/s41467-017-00755-6

    Article  Google Scholar 

  • King MP, Herceg-Bulić I, Bladé I, García-Serrano J, Keenlyside N, Kucharski F, Li C, Sobolowski S (2018) Importance of late fall ENSO teleconnection in the Euro-Atlantic sector. Bull Am Meteorol Soc 99(7):1337–1343

    Google Scholar 

  • Kodera K (1994) Influence of volcanic eruptions on the troposphere through stratospheric dynamical processes in the northern hemisphere winter. J Geophys Res Atmos 99(D1):1273–1282. https://doi.org/10.1029/93JD02731

    Article  Google Scholar 

  • Kravitz B, Robock A (2011) Climate effects of high-latitude volcanic eruptions: role of the time of year. J Geophys Res Atmos. https://doi.org/10.1029/2010JD014448

    Article  Google Scholar 

  • Lai AWC, Herzog M, Graf HF (2015) Two key parameters for the El Niño continuum: zonal wind anomalies and Western Pacific subsurface potential temperature. Clim Dyn 45(11):3461–3480

    Google Scholar 

  • Lai AWC, Herzog M, Graf HF (2018) ENSO forecasts near the spring predictability barrier and possible reasons for the recently reduced predictability. J Clim 31(2):815–838

    Google Scholar 

  • Levine AFZ, McPhaden MJ, Frierson DMW (2017) The impact of the AMO on multidecadal ENSO variability. Geophys Res Lett 44(8):3877–3886. https://doi.org/10.1002/2017GL072524

    Article  Google Scholar 

  • Levine AFZ, Frierson DMW, McPhaden MJ (2018) AMO forcing of multidecadal Pacific ITCZ variability. J Clim 31(14):5749–5764

    Google Scholar 

  • Li J, **e SP, Cook ER, Huang G, D’arrigo R, Liu F et al (2011) Interdecadal modulation of El Niño amplitude during the past millennium. Nat Clim Chang 1(2):114–118. https://doi.org/10.1038/nclimate1086

    Article  Google Scholar 

  • Li J, **e SP, Cook ER, Morales MS, Christie DA, Johnson NC et al (2013) El Niño modulations over the past seven centuries. Nat Clim Chang 3(9):822–826. https://doi.org/10.1038/nclimate1936

    Article  Google Scholar 

  • Lim H-G, Yeh S-W, Kug J-S, Park Y-G, Park J-H, Park R, Song C-K (2016) Threshold of the volcanic forcing that leads the El Niño-like warming in the last millennium: results from the ERIK simulation. Clim Dyn 46(11):3725–3736. https://doi.org/10.1007/s00382-015-2799-3

    Article  Google Scholar 

  • Liu F, Chai J, Wang B, Liu J, Zhang X, Wang ZY (2016) Global monsoon precipitation responses to large volcanic eruptions. Sci Rep 6:24331. https://doi.org/10.1038/srep24331

    Article  Google Scholar 

  • Liu F, Li J, Wang B, Liu J, Li T, Huang G, Wang Z (2018) Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium. Clim Dyn 50(9–10):3799–3812. https://doi.org/10.1007/s00382-017-3846-z

    Article  Google Scholar 

  • Liu F, **ng C, Li J, Wang B, Chai J, Gao C, Chen D (2020) Could the recent Taal volcano eruption trigger an El Niño and lead to Eurasian warming. Adv Atmos Sci 37:663–670

    Google Scholar 

  • Liu F, Gao C, Chai J, Robock A, Wang B, Li J, Dong W (2022) Tropical volcanism enhanced the East Asian summer monsoon during the last millennium. Nat Commun 13(1):1–7

    Google Scholar 

  • Lloyd J, Guilyardi E, Weller H (2011) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: using AMIP runs to understand the heat flux feedback mechanisms. Clim Dyn 37(7):1271–1292. https://doi.org/10.1007/s00382-010-0895-y

    Article  Google Scholar 

  • Luther FM (1976) Relative influence of stratospheric aerosols on solar and longwave radiative fluxes for a tropical atmosphere. J Appl Meteorol Climatol 15(9):951–955

    Google Scholar 

  • Ma Y, Sun J, Dong T et al (2022) More profound impact of CP ENSO on Australian spring rainfall in recent decades. Clim Dyn. https://doi.org/10.1007/s00382-022-06485-w

    Article  Google Scholar 

  • Maher N, McGregor S, England MH, Gupta AS (2015) Effects of volcanism on tropical variability. Geophys Res Lett. https://doi.org/10.1002/2015GL064751

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (2000) Long-term variability in the El Niño Southern Oscillation and associated teleconnections. In: Diaz HF, Markgraf V (eds) El Niño and the Southern Oscillation: Multiscale variability and its impacts on natural ecosystems and society, vol 2. Cambridge University Press, Cambridge, pp 321–372

    Google Scholar 

  • Mann ME, Cane MA, Zebiak SE, Clement A (2005) Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J Clim 18(3):447–456. https://doi.org/10.1175/JCLI-3276.1

    Article  Google Scholar 

  • Mann ME, Fuentes JD, Rutherford S (2012) Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures. Nat Geosci. https://doi.org/10.1038/ngeo1394

    Article  Google Scholar 

  • Marshall A, Scaife AA, Ineson S (2009) Enhanced seasonal prediction of European winter warming following volcanic eruptions. J Clim 22:6168–6180

    Google Scholar 

  • Marshall L, Schmidt A, Toohey M, Carslaw KS, Mann GW, Sigl M et al (2018) Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora. Atmos Chem Phys 18(3):2307–2328. https://doi.org/10.5194/acp-18-2307-2018

    Article  Google Scholar 

  • Marshall LR, Schmidt A, Johnson JS, Mann GW, Lee LA, Rigby R, Carslaw KS (2021) Unknown eruption source parameters cause large uncertainty in historical volcanic radiative forcing reconstructions. J Geophys Res Atmos 126(13):e2020JD033578

    Google Scholar 

  • Marshall LR, Maters EC, Schmidt A, Timmreck C, Robock A, Toohey M (2022) Volcanic effects on climate: recent advances and future avenues. Bull Volcanol 84(5):1–14

    Google Scholar 

  • Mass CF, Portman DA (1989) Major volcanic eruptions and climate: a critical evaluation. J Clim 2(6):566–593

    Google Scholar 

  • McCracken M, Luther F (1984) Preliminary estimate of the radiative and climatic effects of the El Chichón eruption. Geofis Int 23–3:385–401

    Google Scholar 

  • McGregor S, Timmermann A (2011) The effect of explosive tropical volcanism on ENSO. J Clim 24(8):2178–2191. https://doi.org/10.1175/2010JCLI3990.1

    Article  Google Scholar 

  • McGregor S, Khodri M, Maher N, Ohba M, Pausata FS, Stevenson S (2020) The effect of strong volcanic eruptions on ENSO. El Niño Southern oscillation in a changing climate. Wiley, NewJersey, pp 267–287

    Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314(5806):1740–1745

    Google Scholar 

  • Medhaug I, Stolpe MB, Fischer EM, Knutti R (2017) Reconciling controversies about the ‘global warming hiatus.’ Nature 545:41. https://doi.org/10.1038/nature22315

    Article  Google Scholar 

  • Meehl GA, Teng H, Maher N, England MH (2015) Effects of the Mt. Pinatubo eruption on decadal climate prediction skill. Geophys Res Lett 42:10840–10846. https://doi.org/10.1002/2015GL066608

    Article  Google Scholar 

  • Ménégoz M, Bilbao R, Bellprat O, Guemas V, Doblas-Reyes FJ (2018a) Forecasting the climate response to volcanic eruptions: prediction skill related to stratospheric aerosol forcing. Environ Res Lett 13(6):064022

    Google Scholar 

  • Ménégoz M, Cassou C, Swingedouw D, Ruprich-Robert Y, Bretonnière PA, Doblas-Reyes F (2018b) Role of the Atlantic Multidecadal Variability in modulating the climate response to a Pinatubo-like volcanic eruption. Clim Dyn 51(5):1863–1883

    Google Scholar 

  • Mezzina B, García-Serrano J, Bladé I, Kucharski F (2020) Dynamics of the ENSO teleconnection and NAO variability in the North Atlantic-European late winter. J Clim 33(3):907–923

    Google Scholar 

  • Mignot J, Khodri M, Frankignoul C, Servonnat J (2011) Volcanic impact on the Atlantic ocean over the last millennium. Clim past 7(4):1439–1455

    Google Scholar 

  • Mills MJ, Schmidt A, Easter R, Solomon S, Kinnison DE, Ghan SJ, Gettelman A (2016) Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1 (WACCM). J Geophys Res Atmos 121(5):2332–2348

    Google Scholar 

  • Mills MJ, Richter JH, Tilmes S, Kravitz B, MacMartin DG, Glanville AA, Kinnison DE (2017) Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1 (WACCM). J Geophys Res Atmos 122(23):13–061

    Google Scholar 

  • Monerie PA, Moine M-P, Terray L, Valcke S (2017) Quantifying the impact of early 21st century volcanic eruptions on global-mean surface temperature. Environ Res Lett 12:054010

    Google Scholar 

  • Nicholls N (1985) Predictability of interannual variations of Australian seasonal tropical cyclone activity. Mon Weather Rev 113(7):1144–1149

    Google Scholar 

  • Nicholls N (1988) Low latitude volcanic eruptions and the El Niño-Southern oscillation. J Climatol 8(1):91–95. https://doi.org/10.1002/joc.3370080109

    Article  Google Scholar 

  • Nicholls N (2008) Recent trends in the seasonal and temporal behaviour of the El Niño-Southern oscillation. Geophys Res Lett. https://doi.org/10.1029/2008GL034499

    Article  Google Scholar 

  • Niemeier U, Schmidt H, Timmreck C (2010) The dependency of geoengineered sulfate aerosol on the emission strategy. Atmos Sci Lett 12(2):189–194. https://doi.org/10.1002/asl.304

    Article  Google Scholar 

  • Ohba M, Ueda H (2009) Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J Clim 22(1):177–192. https://doi.org/10.1175/2008JCLI2334.1

    Article  Google Scholar 

  • Ohba M, Shiogama H, Yokohata T, Watanabe M (2013) Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J Clim 26(14):5169–5182. https://doi.org/10.1175/JCLI-D-12-00471.1

    Article  Google Scholar 

  • Okumura YM, Deser C (2010) Asymmetry in the duration of El Niño and La Niña. J Clim 23(21):5826–5843. https://doi.org/10.1175/2010JCLI3592.1

    Article  Google Scholar 

  • Oman L, Robock A, Stenchikov GL, Schmidt GA, Ruedy R (2005) Climatic response to high-latitude volcanic eruptions. J Geophys Res Atmos. https://doi.org/10.1029/2004JD005487

    Article  Google Scholar 

  • Oman L, Robock A, Stenchikov GL, Thordarson T (2006) High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophys Res Lett. https://doi.org/10.1029/2006GL027665

    Article  Google Scholar 

  • Orihuela-Pinto B, England MH, Taschetto AS (2022) Interbasin and interhemispheric impacts of a collapsed Atlantic overturning circulation. Nat Clim Change 12:558–565

    Google Scholar 

  • Osipov S, Dogar MM, Stenchikov G (2016) Study of Regional Volcanic Impact on the Middle East and North Africa using high-resolution global and regional models. In: EGU general assembly conference abstracts. pp EPSC2016–8617

  • Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3(10):688–694

    Google Scholar 

  • Otto-Bliesner BL, Brady EC, Fasullo J, Jahn A, Landrum L, Stevenson S, Strand G (2016) Climate variability and change since 850 CE: an ensemble approach with the community earth system model. Bull Am Meteor Soc 97(5):735–754

    Google Scholar 

  • Pausata FSR, Chafik L, Caballero R, Battisti DS (2015) Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc Natl Acad Sci 112(45):13784–13788. https://doi.org/10.1073/pnas.1509153112

    Article  Google Scholar 

  • Pausata FSR, Karamperidou C, Caballero R, Battisti DS (2016) ENSO response to high-latitude volcanic eruptions in the Northern Hemisphere: the role of the initial conditions. Geophys Res Lett 43(16):8694–8702. https://doi.org/10.1002/2016GL069575

    Article  Google Scholar 

  • Pausata FS, Zanchettin D, Karamperidou C, Caballero R, Battisti DS (2020) ITCZ shift and extratropical teleconnections drive ENSO response to volcanic eruptions. Sci Adv 6(23):eaaz5006

    Google Scholar 

  • Perlwitz J, Graf H-F (1995) The statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter. J Clim 8:2281–2295. https://doi.org/10.1175/1520-0442(1995)008%3c2281:tscbta%3e2.0.co;2

    Article  Google Scholar 

  • Pinto JP, Turco RP, Toon OB (2018) Self-limiting physical and chemical effects in volcanic eruption clouds. J Geophys Res Atmos 94(D8):11165–11174. https://doi.org/10.1029/JD094iD08p11165

    Article  Google Scholar 

  • Pokhrel S, Sikka DR (2013) Variability of the TRMM-PR total and convective and stratiform rain fractions over the Indian region during the summer monsoon. Clim Dyn 41(1):21–44

    Google Scholar 

  • Pokhrel S, Saha SK, Dhakate A, Rahman H, Chaudhari HS, Salunke K, Hazra A, Sujith K, Sikka DR (2016) Seasonal prediction of Indian summer monsoon rainfall in NCEP CFSv2: forecast and predictability error. Clim Dyn 46(7):2305–2326

    Google Scholar 

  • Polo I, Martin-Rey M, Rodriguez-Fonseca B, Kucharski F, Mechoso CR (2014) Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Clim Dyn 44(1–2):115–131. https://doi.org/10.1007/s00382-014-2354-7

    Article  Google Scholar 

  • Polvani LM, Camargo SJ (2020) Scant evidence for a volcanically forced winter warming over Eurasia following the Krakatau eruption of August 1883. Atmos Chem Phys 20(22):13687–13700

    Google Scholar 

  • Polvani LM, Banerjee A, Schmidt A (2019) Northern Hemisphere continental winter warming following the 1991 Mt. Pinatubo eruption: reconciling models and observations. Atmos Chem Phys 19(9):6351–6366

    Google Scholar 

  • Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502(7472):541–545. https://doi.org/10.1038/nature12580

    Article  Google Scholar 

  • Predybaylo E, Stenchikov GL, Wittenberg AT, Zeng F (2017) Impacts of a Pinatubo-size volcanic eruption on ENSO. J Geophys Res Atmos 122(2):925–947. https://doi.org/10.1002/2016JD025796

    Article  Google Scholar 

  • Predybaylo E, Stenchikov G, Wittenberg AT, Osipov S (2020) El Niño/Southern oscillation response to low-latitude volcanic eruptions depends on ocean pre-conditions and eruption timing. Commun Earth Environ 1(1):1–13

    Google Scholar 

  • Raible CC, Brönnimann S, Auchmann R, Brohan P, Frölicher TL, Graf HF, Wegmann M (2016) Tambora 1815 as a test case for high impact volcanic eruptions: earth system effects. Wiley Interdiscip Rev Clim Change 7(4):569–589

    Google Scholar 

  • Rampino MR, Self S (1984) Sulphur-rich volcanic eruptions and stratospheric aerosols. Nature. https://doi.org/10.1038/310677a0

    Article  Google Scholar 

  • Ren HL, Scaife AA, Dunstone N, Tian B, Liu Y, Ineson S, MacLachlan C (2019) Seasonal predictability of winter ENSO types in operational dynamical model predictions. Clim Dyn 52(7):3869–3890

    Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38(2):191–219

    Google Scholar 

  • Robock A, Liu Y (1994) The volcanic signal in Goddard Institute for Space Studies three-dimensional model simulations. J Clim 7(1):44–55

    Google Scholar 

  • Robock A, Mao J (1992) Winter warming from large volcanic eruptions. Geophys Res Lett 19(24):2405–2408. https://doi.org/10.1029/92GL02627

    Article  Google Scholar 

  • Robock A, Mao J (1995) The volcanic signal in surface temperature observations. J Clim 8(5):1086–1103

    Google Scholar 

  • Robock A, Taylor KE, Stenchikov GL, Liu Y (1995) GCM evaluation of a mechanism for El Niño triggering by the El Chichón ash cloud. Geophys Res Lett 22(17):2369–2372. https://doi.org/10.1029/95gl02065

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the El Niño/Southern oscillation (ENSO). Mon Weather Rev 114(12):2352–2362

    Google Scholar 

  • Ruprich-Robert Y, Msadek R, Castruccio F, Yeager S, Delworth T, Danabasoglu G (2017) Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J Clim 30(8):2785–2810. https://doi.org/10.1175/JCLI-D-16-0127.1

    Article  Google Scholar 

  • Russell AM, Gnanadesikan A (2014) Understanding multidecadal variability in ENSO amplitude. J Clim 27(11):4037–4051. https://doi.org/10.1175/JCLI-D-13-00147.1

    Article  Google Scholar 

  • Santer BD, Bonfils C, Painter JF, Zelinka MD, Mears C, Solomon S et al (2014) Volcanic contribution to decadal changes in tropospheric temperature. Nat Geosci. https://doi.org/10.1038/ngeo2098

    Article  Google Scholar 

  • Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45. https://doi.org/10.1038/nature13636

    Article  Google Scholar 

  • Schneider, D. P., Ammann, C. M., Otto-Bliesner, B. L., & Kaufman, D. S. (2009). Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. Journal of Geophysical Research: Atmospheres, 114(D15).

  • Sear CB, Kelly PM, Jones PD, Goodess CM (1987) Global surface temperature responses to major volcanic eruptions. Nature. https://doi.org/10.1038/330365a0

    Article  Google Scholar 

  • Self S, Rampino MR, Zhao J, Katz MG (1997) Volcanic aerosol perturbations and strong El Niño events: no general correlation. Geophys Res Lett 24(10):1247–1250. https://doi.org/10.1029/97GL01127

    Article  Google Scholar 

  • Shindell DT, Schmidt GA, Mann ME, Faluvegi G (2004) Dynamic winter climate response to large tropical volcanic eruptions since 1600. J Geophys Res. https://doi.org/10.1029/2003JD004151

    Article  Google Scholar 

  • Sigl M, Winstrup M, McConnell JR, Welten KC, Plunkett G, Ludlow F et al (2015) Timing and climate forcing of volcanic eruptions for the past 2500 years. Nature 523:543

    Google Scholar 

  • Signh M et al (2020) Fingerprint of volcanic forcing on the ENSO Indian monsoon coupling. Sci Adv 6:eaba8164

    Google Scholar 

  • Soden BJ, Wetherald RT, Stenchikov GL, Robock A (2002) Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. Science 296(5568):727

    Google Scholar 

  • Stahle DS, D’Arrigo RD, Krusic PJ, Cleaveland MK, Cook ER, Allan RJ et al (1998) Experimental dendroclimatic reconstruction of the Southern oscillation. Bull Am Meteor Soc 79(10):2137–2152. https://doi.org/10.1175/1520-0477(1998)079%3c2137:EDROTS%3e2.0.CO;2

    Article  Google Scholar 

  • Stenchikov GL, Kirchner I, Robock A, Graf HF, Antuña JC, Grainger RG et al (1998) Radiative from the 1991 Mount Pinatubo volcanic eruption. J Geophys Res 103(D12):13837–13857

    Google Scholar 

  • Stenchikov G, Robock A, Ramaswamy V, Schwarzkopf MD, Hamilton K, Ramachandran S (2002) Arctic oscillation response to the 1991 Mount Pinatubo eruption: effects of volcanic aerosols and ozone depletion. J Geophys Res 107:4803. https://doi.org/10.1029/2002jd002090

    Article  Google Scholar 

  • Stenchikov G, Hamilton K, Robock A, Ramaswamy V, Schwarzkopf MD (2004) Arctic oscillation response to the 1991 Pinatubo eruption in the SKYHI general circulation model with a realistic quasi-biennial oscillation. J Geophys Res 109:D03112. https://doi.org/10.1029/2003JD003699

    Article  Google Scholar 

  • Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf H-F (2006) Arctic oscillation response to volcanic eruptions in the IPCC AR4 climate models. J Geophys Res 111:D07107. https://doi.org/10.1029/2005JD006286

    Article  Google Scholar 

  • Stenchikov GL, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Zeng F (2009) Volcanic signals in oceans. J Geophys Res Atmos 114(16):1–13. https://doi.org/10.1029/2008JD011673

    Article  Google Scholar 

  • Stevenson S, Otto-Bliesner B, Fasullo J, Brady E (2016) “El Niño Like” hydroclimate responses to last millennium volcanic eruptions. J Clim 29(8):2907–2921. https://doi.org/10.1175/JCLI-D-15-0239.1

    Article  Google Scholar 

  • Stevenson S, Fasullo JT, Otto-Bliesner BL, Tomas RA, Gao C (2017) Role of eruption season in reconciling model and proxy responses to tropical volcanism. Proc Natl Acad Sci 114(8):1822–1826. https://doi.org/10.1073/pnas.1612505114

    Article  Google Scholar 

  • Stoffel M, Khodri M, Corona C, Guillet S, Poulain V, Bekki S et al (2015) Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1500 years. Nat Geosci 8:784. https://doi.org/10.1038/ngeo2526

    Article  Google Scholar 

  • Sutton RT, Dong B, Gregory JM (2007) Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys Res Lett. https://doi.org/10.1029/2006GL028164

    Article  Google Scholar 

  • Swingedouw D, Ortega P, Mignot J, Guilyardi E, MassonDelmotte V, Butler PG et al (2015) Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions. Nat Commun. https://doi.org/10.1038/ncomms7545

    Article  Google Scholar 

  • Swingedouw D, Mignot J, Ortega P, Khodri M, Menegoz M, Cassou C, Hanquiez V (2017) Impact of explosive volcanic eruptions on the main climate variability modes. Global Planet Change 150:24–45. https://doi.org/10.1016/j.gloplacha.2017.01.006

    Article  Google Scholar 

  • Taschetto, A. S., Ummenhofer, C. C., Stuecker, M. F., Dommenget, D., Ashok, K., Rodrigues, R. R., & Yeh, S. W. (2020). ENSO atmospheric teleconnections. El Niño southern oscillation in a changing climate, 309–335.

  • Tejedor E, Steiger NJ, Smerdon JE, Serrano-Notivoli R, Vuille M (2021) Global hydroclimatic response to tropical volcanic eruptions over the last millennium. Proc Nat Acad Sci 118(12):e2019145118

    Google Scholar 

  • Thompson DWJ, Wallace JM, Jones PD, Kennedy JJ (2009) Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. J Clim. https://doi.org/10.1175/2009JCLI3089.1

    Article  Google Scholar 

  • Tierney JE, Abram NJ, Anchukaitis KJ, Evans MN, Giry C, Kilbourne KH et al (2015) Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography 30(3):226–252. https://doi.org/10.1002/2014PA002717

    Article  Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398(6729):694–697

    Google Scholar 

  • Timmermann A, An SI, Krebs U, Goosse H (2005) ENSO suppression due to weakening of the North Atlantic thermohaline circulation. J Clim 18(16):3122–3139. https://doi.org/10.1175/JCLI3495.1

    Article  Google Scholar 

  • Timmermann A, Okumura Y, An SI, Clement A, Dong B, Guilyardi E et al (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim 20(19):4899–4919. https://doi.org/10.1175/JCLI4283.1

    Article  Google Scholar 

  • Timmreck C (2012) Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdiscip Rev Clim Change 3(6):545–564. https://doi.org/10.1002/wcc.192

    Article  Google Scholar 

  • Timmreck C, Lorenz SJ, Crowley TJ, Kinne S, Raddatz TJ, Thomas MA, Jungclaus JH (2009) Limited temperature response to the very large AD 1258 volcanic eruption. Geophys Res Lett. https://doi.org/10.1029/2009GL040083

    Article  Google Scholar 

  • Toohey M, Krüger K, Niemeier U, Timmreck C (2011) The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions. Atmos Chem Phys 11(23):12351–12367. https://doi.org/10.5194/acp-11-12351-2011

    Article  Google Scholar 

  • Toohey M, Stevens B, Schmidt H, Timmreck C (2016) Easy volcanic aerosol (EVA v.10) a: n idealized forcing generator for climate simulations. Geosci Model Dev 9(11):4049–4070. https://doi.org/10.5194/gmd-9-4049-2016

    Article  Google Scholar 

  • Trenberth KE, Caron JM (2000) The Southern oscillation revisited: sea level pressures, surface temperatures, and precipitation. J Clim 13(24):4358–4365

    Google Scholar 

  • Trenberth KE, Dai A (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys Res Lett 34:L15702. https://doi.org/10.1029/2007GL030524

    Article  Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res Oceans 103(C7):14291–14324

    Google Scholar 

  • Trepte CR, Veiga RE, McCormick MP (1993) The poleward dispersal of mount pinatubo volcanic aerosol. J Geophys Res 98:18563–18573. https://doi.org/10.1029/93JD01362

    Article  Google Scholar 

  • Wang T, Guo D, Gao YQ, Wang H, Zheng F, Zhu Y, Miao J, Hu Y (2018) Modulation of ENSO evolution by strong tropical volcanic eruptions. Clim Dyn 51:2433–2453. https://doi.org/10.1007/s00382-017-4021-2

    Article  Google Scholar 

  • Ward B, Pausata FS, Maher N (2020) The sensitivity of the ENSO to volcanic aerosol spatial distribution in the MPI large ensemble. Earth Sys Dyn Discuss 2020:1–28

    Google Scholar 

  • Wilson R, Cook E, D’Arrigo R, Riedwyl N, Evans MN, Tudhope A, Allan R (2010) Reconstructing ENSO: The influence of method, proxy data, climate forcing and teleconnections. J Quat Sci 25(1):62–78. https://doi.org/10.1002/jqs.1297

    Article  Google Scholar 

  • Wittenberg AT, Rosati A, Delworth TL, Vecchi GA, Zeng F (2014) ENSO modulation: Is it decadally predictable? J Clim 27(7):2667–2681. https://doi.org/10.1175/JCLI-D-13-00577.1

    Article  Google Scholar 

  • Wunderlich F, Mitchell DM (2017) Revisiting the observed surface climate response to large volcanic eruptions. Atmos Chem Phys 17:485–499

    Google Scholar 

  • **ng C, Liu F, Wang B, Chen D, Liu J, Liu B (2020) Boreal winter surface air temperature responses to large tropical volcanic eruptions in CMIP5 models. J Clim 33(6):2407–2426

    Google Scholar 

  • Yang L, Gao Y, Gao C, Liu F (2022) Climate responses to tambora-size volcanic eruption and the impact of warming climate. Geophys Res Lett 49(10):e2021GL097477

    Google Scholar 

  • Yeh SW, Cai W, Min SK, McPhaden MJ, Dommenget D, Dewitte B, Collins M, Ashok K, An S-I, Yim B-Y, Kug JS (2018) ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev Geophys 56(1):185–206

    Google Scholar 

  • Zambri B, LeGrande AN, Robock A, Slawinska J (2017) Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. J Geophys Res Atmos 122(15):7971–7989

    Google Scholar 

  • Zanchettin D, Timmreck C, Graf H-F, Rubino A, Lorenz S, Lohmann K et al (2012) Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Clim Dyn 39(1):419–444. https://doi.org/10.1007/s00382-011-1167-1

    Article  Google Scholar 

  • Zanchettin D, Khodri M, Timmreck C, Toohey M, Schmidt A, Gerber EP et al (2016) The model intercomparison project on the climatic response to volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6. Geosci Model Dev 9(8):2701–2719. https://doi.org/10.5194/gmd-9-2701-2016

    Article  Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niño-Southern oscillation. Mon Weather Rev. https://doi.org/10.1175/1520-0493

    Article  Google Scholar 

  • Zeng N (2003) Drought in the Sahel. Science 302(5647):999–1000

    Google Scholar 

  • Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18(12):1853–1860. https://doi.org/10.1175/JCLI3460.1

    Article  Google Scholar 

  • Zhang D, Blender R, Fraedrich K (2013a) Volcanoes and ENSO in millennium simulations: global impacts and regional reconstructions in East Asia. Theor Appl Climatol 111(3–4):437–454

    Google Scholar 

  • Zhang W, ** F-F, Zhao J-X, Qi L, Ren H-L (2013b) The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in Southwest China. J Clim 26(21):8392–8405

    Google Scholar 

  • Zhang W, Wang L, **ang B, Qi L, He J (2015) Impacts of two types of La Niña on the NAO during boreal winter. Clim Dyn 44(5):1351–1366

    Google Scholar 

  • Zhu Y, Toon OB, Jensen EJ, Bardeen CG, Mills MJ, Tolbert MA, Woods S (2020) Persisting volcanic ash particles impact stratospheric SO2 lifetime and aerosol optical properties. Nat Commun 11(1):1–11

    Google Scholar 

  • Zhu F, Emile-Geay J, Anchukaitis KJ, Hakim GJ, Wittenberg AT, Morales MS, King J (2022) A re-appraisal of the ENSO response to volcanism with paleoclimate data assimilation. Nat Commun 13(1):1–9

    Google Scholar 

  • Zhu F, Emile-Geay J, Anchukaitis K, Hakim G, Wittenberg A, Morales M, King J (2021) Volcanoes and ENSO: a re-appraisal with the Last Millennium Reanalysis

  • Zhuo Z, Kirchner I, Pfahl S, Cubasch U (2021) Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments. Atmos Chem Phys 21(17):13425–13442

    Google Scholar 

  • Zuo M, Man W, Zhou T, Guo Z (2018) Different impacts of northern, tropical, and southern volcanic eruptions on the tropical Pacific SST in the last millennium. J Clim 31(17):6729–6744. https://doi.org/10.1175/JCLI-D-17-0571.1

    Article  Google Scholar 

  • Zuo M, Zhou T, Man W (2021) Dependence of global monsoon response to volcanic eruptions on the background oceanic states. J Clim. https://doi.org/10.1175/JCLI-D-20-0891.1

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Japan Society for the Promotion of Science (JSPS) for providing a conducive environment and related resources (Grant Number JP22F32012) to conduct this research under their postdoctoral fellowship research program in Japan. Additionally, comments and feedback from anonymous reviewers and Journal Editor are also acknowledged.

Funding

Part of this work is funded by Grant-in-Aid for JSPS Research Fellow Grant Number JP22F32012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mubashar Dogar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogar, M.M., Hermanson, L., Scaife, A.A. et al. A Review of El Niño Southern Oscillation Linkage to Strong Volcanic Eruptions and Post-Volcanic Winter Warming. Earth Syst Environ 7, 15–42 (2023). https://doi.org/10.1007/s41748-022-00331-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-022-00331-z

Keywords

Navigation