Log in

Current and Emerging Bioresorbable Metallic Scaffolds: An Insight into Their Development, Processing and Characterisation

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Solid metals and their alloys have been widely used for synthesis and fabrication of the implants and stents replacing human tissues or their functions for a quite a long time. However, in recent years, the advent of bioresorbable metallic materials have played an important role in biomedical applications. Scaffolds have been utilized in tissue regeneration to facilitate the formation and growth of new tissues or organs where a balance between temporary mechanical support and mass transport (degradation and cell growth) is ideally achieved. Bioresorbable metallic scaffolds are designed to reduce adverse events related to permanent metallic implants by providing temporary mechanical support and subsequent complete resorption. In view of the importance of emerging bioresorbable biomaterials, a brief review about development, processing and characterisation of bioresorbable metallic scaffolds is presented here. Focus is placed on metals/alloys as material for scaffold preparation. First, fundamental aspects about biomaterials and metallic materials and their considerations related to scaffold development are established. Second, processing/fabrication methods of these materials are described and finally characterisation methods to establish suitability of scaffolds are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure: 1
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Similar content being viewed by others

References

  1. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037

    Article  CAS  Google Scholar 

  2. Yang K, Zhou C, Fan H, Fan Y, Jiang Q, Song P, Fan H, Chen Y, Zhang X (2018) Bio-functional design, application and trends in metallic biomaterials. Int J Mol Sci. https://doi.org/10.3390/ijms19010024

    Article  Google Scholar 

  3. Shadanbaz S, Dias GJ (2012) Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater 8:20–30. https://doi.org/10.1016/j.actbio.2011.10.016

    Article  CAS  Google Scholar 

  4. Yarlagadda PKDV, Chandrasekharan M, Shyan JYM (2005) Recent advances and current developments in tissue scaffolding. Biomed Mater Eng 15:159–177

    CAS  Google Scholar 

  5. Cheung H-Y, Lau K-T, Lu T-P, Hui D (2007) A critical review on polymer-based bio-engineered materials for scaffold development. Compos Part B Eng 38:291–300. https://doi.org/10.1016/j.compositesb.2006.06.014

    Article  CAS  Google Scholar 

  6. Hermawan H, Mantovani D (2009) Degradable metallic biomaterials: the concept, current developments and future directions. Minerva Biotecnol 21:207

    Google Scholar 

  7. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224. https://doi.org/10.1016/S0266-3538(00)00241-4

    Article  CAS  Google Scholar 

  8. Vert M (2005) Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromol 6:538–546. https://doi.org/10.1021/bm0494702

    Article  CAS  Google Scholar 

  9. Panaich S, Schreiber T, Grines C (2014) Bioresorbable Scaffolds. Interv. Cardiol Rev 9:175. https://doi.org/10.15420/2Ficr.2014.9.3.175

    Article  Google Scholar 

  10. Yusop AH, Bakir AA, Shaharom NA, Abdul Kadir MR, Hermawan H (2012) Porous biodegradable metals for hard tissue scaffolds: a review. Int J Biomater 2012:641430. https://doi.org/10.1155/2012/641430

    Article  CAS  Google Scholar 

  11. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003

    Article  CAS  Google Scholar 

  12. Wang Z, Li N, Li R, Li Y, Ruan L (2014) Biodegradable intestinal stents: a review. Prog Nat Sci Mater Int 24:423–432. https://doi.org/10.1016/j.pnsc.2014.08.008

    Article  CAS  Google Scholar 

  13. Yun Y, Dong Z, Lee N, Liu Y, Xue D, Guo X, Kuhlmann J, Doepke A, Halsall HB, Heineman W (2009) Revolutionizing biodegradable metals. Mater Today 12:22–32. https://doi.org/10.1016/S1369-7021(09)70273-1

    Article  CAS  Google Scholar 

  14. Jia G, Chen C, Zhang J, Wang Y, Yue R, Luthringer-Feyerabend BJC, Willumeit-Roemer R, Zhang H, **ong M, Huang H (2018) In vitro degradation behavior of Mg scaffolds with three-dimensional interconnected porous structures for bone tissue engineering. Corros Sci 144:301–312. https://doi.org/10.1016/j.corsci.2018.09.001

    Article  CAS  Google Scholar 

  15. He J, He F-L, Li D-W, Liu Y-L, Yin D-C (2016) A novel porous Fe/Fe-W alloy scaffold with a double-layer structured skeleton: preparation, in vitro degradability and biocompatibility. Colloids Surf B 142:325–333. https://doi.org/10.1016/j.colsurfb.2016.03.002

    Article  CAS  Google Scholar 

  16. Khalajabadi SZ, Ahmad N, Izman S, Abu ABH, Haider W, Kadir MRA (2017) In vitro biodegradation, electrochemical corrosion evaluations and mechanical properties of an Mg/HA/TiO2 nanocomposite for biomedical applications. J Alloys Compd 696:768–781. https://doi.org/10.1016/j.jallcom.2016.11.106

    Article  CAS  Google Scholar 

  17. Ryan GE, Pandit AS, Apatsidis DP (2008) Porous titanium scaffolds fabricated using a rapid prototy** and powder metallurgy technique. Biomaterials 29:3625–3635. https://doi.org/10.1016/j.biomaterials.2008.05.032

    Article  CAS  Google Scholar 

  18. Čapek J, Machová M, Fousová M, Kubásek J, Vojtěch D, Fojt J, Jablonska E, Lipov J, Ruml T (2016) Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Mater Sci Eng C 69:631–639. https://doi.org/10.1016/j.msec.2016.07.027

    Article  CAS  Google Scholar 

  19. Waksman R, Lipinski MJ, Acampado E, Cheng Q, Adams L, Torii S, Gai J, Torguson R, Hellinga DM, Westman PC (2017) Comparison of acute thrombogenicity for metallic and polymeric bioabsorbable scaffolds: magmaris versus absorb in a porcine arteriovenous shunt model. Circ Cardiovasc Interv 10:e004762. https://doi.org/10.1161/CIRCINTERVENTIONS.116.004762

    Article  CAS  Google Scholar 

  20. Saris N-EL, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Magnesium: an update on physiological, clinical and analytical aspects. Clin Chim acta 294:1–26. https://doi.org/10.1016/S0009-8981(99)00258-2

    Article  CAS  Google Scholar 

  21. Vormann J (2003) Magnesium: nutrition and metabolism. Mol Aspects Med 24:27–37. https://doi.org/10.1016/S0098-2997(02)00089-4

    Article  CAS  Google Scholar 

  22. Okuma T (2001) Magnesium and bone strength. Nutrition 17:679–680. https://doi.org/10.1016/s0899-9007(01)00551-2

    Article  CAS  Google Scholar 

  23. Gu XN, Zhou WR, Zheng YF, Liu Y, Li YX (2010) Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material. Mater Lett 64:1871–1874. https://doi.org/10.1016/j.matlet.2010.06.015

    Article  CAS  Google Scholar 

  24. Wen CE, Yamada Y, Shimojima K, Chino Y, Hosokawa H, Mabuchi M (2004) Compressibility of porous magnesium foam: dependency on porosity and pore size. Mater Lett 58:357–360. https://doi.org/10.1016/S0167-577X(03)00500-7

    Article  CAS  Google Scholar 

  25. Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Processing of biocompatible porous Ti and Mg. Scr Mater 45:1147–1153. https://doi.org/10.1016/S1359-6462(01)01132-0

    Article  CAS  Google Scholar 

  26. Yamada Y, Shimojima K, Sakaguchi Y, Mabuchi M, Nakamura M, Asahina T, Mukai T, Kanahashi H, Higashi K (2000) Processing of cellular magnesium materials. Adv Eng Mater 2:184–187. https://doi.org/10.1002/(SICI)1527-2648(200004)2:4%3C184::AID-ADEM184%3E3.0.CO;2-W

    Article  CAS  Google Scholar 

  27. Tan L, Gong M, Zheng F, Zhang B, Yang K (2009) Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds. Biomed Mater 4:15016. https://doi.org/10.1088/1748-6041/4/1/015016

    Article  CAS  Google Scholar 

  28. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962. https://doi.org/10.1016/j.biomaterials.2006.05.029

    Article  CAS  Google Scholar 

  29. Hermawan H, Dubé D, Mantovani D (2010) Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. J Biomed Mater Res Part A 93:1–11. https://doi.org/10.1002/jbm.a.32224

    Article  CAS  Google Scholar 

  30. Moravej M, Purnama A, Fiset M, Couet J, Mantovani D (2010) Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomater 6:1843–1851. https://doi.org/10.1016/j.actbio.2010.01.008

    Article  CAS  Google Scholar 

  31. Oriňák A, Oriňáková R, Králová ZO, Turoňová AM, Kupková M, Hrubovčáková M, Radoňák J, Džunda R (2014) Sintered metallic foams for biodegradable bone replacement materials. J Porous Mater 21:131–140. https://doi.org/10.1007/s10934-013-9757-4

    Article  CAS  Google Scholar 

  32. Song G (2007) Control of biodegradation of biocompatable magnesium alloys. Corros Sci 49:1696–1701. https://doi.org/10.1016/j.corsci.2007.01.001

    Article  CAS  Google Scholar 

  33. Sangiorgi G, Melzi G, Agostoni P, Cola C, Clementi F, Romitelli P, Virmani R, Colombo A (2007) Engineering aspects of stents design and their translation into clinical practice. Ann Ist Super Sanita 43:89–100

    Google Scholar 

  34. Li N, Zheng Y (2013) Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol 29:489–502. https://doi.org/10.1016/j.jmst.2013.02.005

    Article  CAS  Google Scholar 

  35. Yang J, Cui F, Lee IS (2011) Surface modifications of magnesium alloys for biomedical applications. Ann Biomed Eng 39:1857–1871. https://doi.org/10.1007/s10439-011-0300-y

    Article  Google Scholar 

  36. Molchanova EK (1965) Phase diagrams of titanium alloys. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  37. Lutjering G, Wiliams JG (2003) Titanium. Springer-Verlag, Berlin

    Book  Google Scholar 

  38. Brooks CR (1984) Heat treatment, structure and properties of nonferrous alloys. American Society for Metals, Washington

    Google Scholar 

  39. Alvarez K, Nakajima H (2009) Metallic scaffolds for bone regeneration. Materials (Basel) 2:790–832. https://doi.org/10.3390/ma2030790

    Article  CAS  Google Scholar 

  40. Prymak O, Bogdanski D, Köller M, Esenwein SA, Muhr G, Beckmann F, Donath T, Assad M, Epple M (2005) Morphological characterization and in vitro biocompatibility of a porous nickel–titanium alloy. Biomaterials 26:5801–5807. https://doi.org/10.1016/j.biomaterials.2005.02.029

    Article  CAS  Google Scholar 

  41. Greiner C, Oppenheimer SM, Dunand DC (2005) High strength, low stiffness, porous NiTi with superelastic properties. Acta Biomater 1:705–716. https://doi.org/10.1016/j.actbio.2005.07.005

    Article  Google Scholar 

  42. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491. https://doi.org/10.1016/j.biomaterials.2005.02.002

    Article  CAS  Google Scholar 

  43. Čapek J, Vojtěch D (2015) Powder metallurgical techniques for fabrication of biomaterials. Manuf Technol 15:964–969. https://doi.org/10.21062/ujep/x.2015/a/1213-2489/MT/15/6/964

    Article  Google Scholar 

  44. Wen CE, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M (2002) Processing and mechanical properties of autogenous titanium implant materials. J Mater Sci Mater Med 13:397–401. https://doi.org/10.1023/A:1014344819558

    Article  CAS  Google Scholar 

  45. Dizlek ME, Guden M, Turkan U, Tasdemirci A (2009) Processing and compression testing of Ti6Al4V foams for biomedical applications. J Mater Sci 44:1512–1519. https://doi.org/10.1007/s10853-008-3038-7

    Article  CAS  Google Scholar 

  46. Gao C, Wang C, ** H, Wang Z, Li Z, Shi C, Leng Y, Yang F, Liu H, Wang J (2018) Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Adv 8:25210–25227. https://doi.org/10.1039/C8RA04815K

    Article  CAS  Google Scholar 

  47. Al-Tamimi AA, Fernandes PRA, Peach C, Cooper G, Diver C, Bartolo PJ (2017) Metallic bone fixation implants: a novel design approach for reducing the stress shielding phenomenon. Virtual Phys Prototyp 12:141–151. https://doi.org/10.1080/17452759.2017.1307769

    Article  Google Scholar 

  48. Hollister SJ, Levy RA, Chu T, Halloran JW, Feinberg SE (2000) An image-based approach for designing and manufacturing craniofacial scaffolds. Int J Oral Maxillofac Surg 29:67–71. https://doi.org/10.1034/j.1399-0020.2000.290115.x

    Article  CAS  Google Scholar 

  49. DeGarmo P, Black JT, Kohser RA (2003) Materials and processes in manufacturing. John Wiley, New York

    Google Scholar 

  50. Li H, Wu T, Zheng Y, El-Hamshary H, Al-Deyab SS, Mo X (2014) Fabrication and characterization of Mg/P (LLA-CL)-blended nanofiber scaffold. J Biomater Sci Polym Ed 25:1013–1027. https://doi.org/10.1080/09205063.2014.918456

    Article  CAS  Google Scholar 

  51. Wei J, Jia J, Wu F, Wei S, Zhou H, Zhang H, Shin J-W, Liu C (2010) Hierarchically microporous/macroporous scaffold of magnesium–calcium phosphate for bone tissue regeneration. Biomaterials 31:1260–1269. https://doi.org/10.1016/j.biomaterials.2009.11.005

    Article  CAS  Google Scholar 

  52. Sola A, Bertacchini J, D’Avella D, Anselmi L, Maraldi T, Marmiroli S, Messori M (2019) Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Mater Sci Eng C 96:153–165. https://doi.org/10.1016/j.msec.2018.10.086

    Article  CAS  Google Scholar 

  53. Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632. https://doi.org/10.1016/S0079-6425(00)00002-5

    Article  CAS  Google Scholar 

  54. Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670. https://doi.org/10.1016/j.biomaterials.2005.12.002

    Article  CAS  Google Scholar 

  55. Deshpande VS, Ashby MF, Fleck NA (2001) Foam topology: bending versus stretching dominated architectures. Acta Mater 49:1035–1040. https://doi.org/10.1016/S1359-6454(00)00379-7

    Article  CAS  Google Scholar 

  56. Seyedraoufi ZS, Mirdamadi S (2013) Synthesis, microstructure and mechanical properties of porous Mg–Zn scaffolds. J Mech Behav Biomed Mater 21:1–8. https://doi.org/10.1016/j.jmbbm.2013.01.023

    Article  CAS  Google Scholar 

  57. Kováčik J (1998) The tensile behaviour of porous metals made by GASAR process. Acta Mater 46:5413–5422. https://doi.org/10.1016/S1359-6454(98)00199-2

    Article  Google Scholar 

  58. Hyun S-K, Ikeda T, Nakajima H (2004) Fabrication of lotus-type porous iron and its mechanical properties. Sci Technol Adv Mater 5:201–205. https://doi.org/10.1016/j.stam.2003.11.005

    Article  CAS  Google Scholar 

  59. Murakami T, Ohara K, Narushima T, Ouchi C (2007) Development of a new method for manufacturing iron foam using gases generated by reduction of iron oxide. Mater Trans 48:2937–2944. https://doi.org/10.2320/matertrans.MRA2007127

    Article  CAS  Google Scholar 

  60. Quadbeck P, Hauser R, Kümmel K, Standke G, Stephani G, Nies B, Rößler S, Wegener B (2010) PM biomaterials: iron based cellular metals for degradable synthetic bone replacement. In: European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings. The European Powder Metallurgy Association, p 1

  61. Jee CSY, Guo ZX, Evans JRG, Özgüven N (2000) Preparation of high porosity metal foams. Metall Mater Trans B 31:1345–1352. https://doi.org/10.1007/s11663-000-0021-3

    Article  Google Scholar 

  62. Liu Z, Fan T, Zhang W, Zhang D (2005) The synthesis of hierarchical porous iron oxide with wood templates. Microporous Mesoporous Mater 85:82–88. https://doi.org/10.1016/j.micromeso.2005.06.021

    Article  CAS  Google Scholar 

  63. Yang J, Guo JL, Mikos AG, He C, Cheng G (2018) Material processing and design of biodegradable metal matrix composites for biomedical applications. Ann Biomed Eng 46:1229–1240. https://doi.org/10.1007/s10439-018-2058-y

    Article  Google Scholar 

  64. Vandenbroucke B, Kruth J (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. https://doi.org/10.1108/13552540710776142

    Article  Google Scholar 

  65. Albert DE (2002) The growing importance of materials characterization in biocompatibility testing. Med Device Diagnostic Ind 24:50–59

    Google Scholar 

  66. Pawelec KM, White AA, Best SM (2019) 4-Properties and characterization of bone repair materials. In: Pawelec KM, Planell JABT-BRB, Second E (eds) Woodhead publishing series in biomaterials. Woodhead Publishing, Amsterdam, pp 65–102

    Google Scholar 

  67. Albert DE (2012) 5-Material and chemical characterization for the biological. In: Boutrand JP (ed) Woodhead publishing series in biomaterials. Woodhead Publishing, Amsterdam, pp 65–94

    Google Scholar 

  68. Oh SH, Park IK, Kim JM, Lee JH (2007) In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28:1664–1671. https://doi.org/10.1016/j.biomaterials.2006.11.024

    Article  CAS  Google Scholar 

  69. Maquet V, Blacher S, Pirard R, Pirard J-P, Jérôme R (2000) Characterization of porous polylactide foams by image analysis and impedance spectroscopy. Langmuir 16:10463–10470. https://doi.org/10.1021/la000654l

    Article  CAS  Google Scholar 

  70. Grant PV, Vaz CM, Tomlins PE, Mikhalovska L, Mikhalovsky S, James S, Vadgama P (2006) Physical characterisation of a polycaprolactone tissue scaffold. Surface chemistry in biomedical and environmental science. Springer, Berlin, pp 215–228. https://doi.org/10.1007/1-4020-4741-X_19

    Chapter  Google Scholar 

  71. Lin ASP, Barrows TH, Cartmell SH, Guldberg RE (2003) Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials 24:481–489. https://doi.org/10.1016/S0142-9612(02)00361-7

    Article  CAS  Google Scholar 

  72. Rajagopalan S, Yaszemski MJ, Robb RA (2004) Evaluation of thresholding techniques for segmenting scaffold images in tissue engineering. Medical imaging 2004: image processing. International Society for Optics and Photonics, Washington, pp 1456–1465. https://doi.org/10.1117/12.535927

    Chapter  Google Scholar 

  73. Van Cleynenbreugel T, Schrooten J, Van Oosterwyck H, Vander Sloten J (2006) Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds. Med Biol Eng Comput 44:517–525. https://doi.org/10.1007/s11517-006-0071-z

    Article  Google Scholar 

  74. Brunke O, Odenbach S, Beckmann F (2005) Quantitative methods for the analysis of synchrotron-µ CT datasets of metallic foams. Eur Phys J 29:73–81. https://doi.org/10.1051/epjap:2004203

    Article  CAS  Google Scholar 

  75. Cooper DML, Turinsky AL, Sensen CW, Hallgrímsson B (2003) Quantitative 3D analysis of the canal network in cortical bone by micro-computed tomography. Anat Rec Part B 274:169–179. https://doi.org/10.1002/ar.b.10024

    Article  CAS  Google Scholar 

  76. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27:5892–5900. https://doi.org/10.1016/j.biomaterials.2006.08.013

    Article  CAS  Google Scholar 

  77. León Y, León CA (1998) New perspectives in mercury porosimetry. Adv Colloid Interface Sci 76–77:341–372. https://doi.org/10.1016/S0001-8686(98)00052-9

    Article  Google Scholar 

  78. Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757. https://doi.org/10.1016/j.biomaterials.2003.12.005

    Article  CAS  Google Scholar 

  79. Yang S, Leong K-F, Du Z, Chua C-K (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7:679–689. https://doi.org/10.1089/107632701753337645

    Article  CAS  Google Scholar 

  80. Schumacher M, Deisinger U, Detsch R, Ziegler G (2010) Indirect rapid prototy** of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties. J Mater Sci Mater Med 21:3119–3127. https://doi.org/10.1007/s10856-010-4166-6

    Article  CAS  Google Scholar 

  81. Mahapatro A (2015) Bio-functional nano-coatings on metallic biomaterials. Mater Sci Eng C 55:227–251. https://doi.org/10.1016/j.msec.2015.05.018

    Article  CAS  Google Scholar 

  82. Rodrigues N, Benning M, Ferreira AM, Dixon L, Dalgarno K (2016) Manufacture and characterisation of porous PLA scaffolds. Procedia Cirp 49:33–38. https://doi.org/10.1016/j.procir.2015.07.025

    Article  Google Scholar 

  83. Chen L, Yao Y (2014) Processing, microstructures, and mechanical properties of magnesium matrix composites: a review. Acta Metall Sin (Engl Lett) 27:762–774. https://doi.org/10.1007/s40195-014-0161-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Ministry of Education (Tier1), Singapore, WBS# R 265-000-684-114.

Funding

This research was funded by Ministry of Education-Singapore, Grant no [WBS# R 265-000-684-114].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gupta.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthilkumar, A., Gupta, M. Current and Emerging Bioresorbable Metallic Scaffolds: An Insight into Their Development, Processing and Characterisation. J Indian Inst Sci 102, 585–598 (2022). https://doi.org/10.1007/s41745-021-00276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00276-8

Keywords

Navigation