Log in

NIR Light-Promoted Whole-Cell Catalysis Based on a Light-Harvesting Blackbody Bioreactor

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Whole-cell catalysis, which utilizes enzymes expressed in whole organism (e.g. bacteria and fungi) as the catalyst, is a specific mode of biocatalysis. Compared with pure enzyme catalysis, the catalysis with whole-cell catalysts is more cost-effective. However, in the process of whole-cell catalysis, heat treatment is often necessary due to the high optimum temperature of the enzyme. To enable efficient industrial application of whole-cell catalysis, an environmental friendly heating approach is highly desired. Inspired by the light harvest by blackbody materials, in this paper, we introduced a photothermal approach for harnessing the photon energy for enhanced whole-cell catalysis. A blackbody porous sponge (BPS) with excellent photothermal conversion efficiency was prepared as a bioreactor. Escherichia coli expressed with a thermophilic enzyme (β-glucosidase) was utilized as a model whole-cell catalyst. Moreover, the photothermal properties of the BPS and light-assisted whole-cell catalysis were systematically investigated, demonstrating promising application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green chemistry in the synthesis of pharmaceuticals. Chem Rev. 2022;122(3):3637–710.

    Article  CAS  PubMed  Google Scholar 

  2. Kate A, Sahu LK, Pandey J, Mishra M, Sharma PK. Green catalysis for chemical transformation: the need for the sustainable development. Curr Res Green Sustainable Chem. 2022;5: 100248.

    Article  CAS  Google Scholar 

  3. Hanefeld U, Hollmann F, Paul CE. Biocatalysis making waves in organic chemistry. Chem Soc Rev. 2022;51(2):594–627.

    Article  CAS  PubMed  Google Scholar 

  4. Miller DC, Athavale SV, Arnold FH. Combining chemistry and protein engineering for new-to-nature biocatalysis. Nature Synthesis. 2022;1(1):18–23.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Karasawa M, Stanfield JK, Yanagisawa S, Shoji O, Watanabe Y. Whole-cell biotransformation of benzene to phenol catalysed by intracellular cytochrome P450BM3 activated by external additives. Angew Chem Int Ed. 2018;57(38):12264–9.

    Article  CAS  Google Scholar 

  6. Zhao Q, Ansorge-Schumacher MB, Haag R, Wu C. Living whole-cell catalysis in compartmentalized emulsion. Bioresour Technol. 2020;295: 122221.

    Article  CAS  PubMed  Google Scholar 

  7. Madavi TB, Chauhan S, Keshri A, Alavilli H, Choi K-Y, Pamidimarri SDVN. Whole-cell biocatalysis: Advancements toward the biosynthesis of fuels. Biofuel Bioprod Biorefin. 2022;16:859–76.

    Article  CAS  Google Scholar 

  8. Lin B, Tao Y. Whole-cell biocatalysts by design. Microb Cell Fact. 2017;16(1):106.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wachtmeister J, Rother D. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Curr Opin Biotechnol. 2016;42:169–77.

    Article  CAS  PubMed  Google Scholar 

  10. Lee J, Kim J, Song JE, Song W-S, Kim E-J, Kim Y-G, Jeong H-J, Kim HR, Choi K-Y, Kim B-G. Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli. Nat Chem Biol. 2021;17(1):104–12.

    Article  CAS  PubMed  Google Scholar 

  11. Nur IKT, Rusman, Hanim C, Zuprizal. Effect of pH and temperature on Bacillus subtilis FNCC 0059 oxalate decarboxylase activity. Pak J Biol Sci. 2017;20(9):436–441.

  12. Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene. 2020;754: 144855.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou DJ, Pan J, Yu HL, Zheng GW, Xu JH. Target-oriented discovery of a new esterase-producing strain Enterobacter sp ECU1107 for whole cell-catalyzed production of (2S,3R)-3-phenylglycidate as a chiral synthon of Taxol. Appl Microbiol Biotechnol. 2013;97(14):6293–300.

    Article  CAS  PubMed  Google Scholar 

  14. Wang T, Wang F, Ma RR, Tian YQ. Enzymatically modified starch for paper surface sizing: Enzymes with different action modes and sites. Carbohydr Polym. 2022;291: 119636.

    Article  CAS  PubMed  Google Scholar 

  15. Turvey MW, Gabriel KN, Lee W, Taulbee JJ, Kim JK, Chen SL, Lau CJ, Kattan RE, Pham JT, Majumdar S, Garcia D, Weiss GA, Collins PG. Single-molecule Taq DNA polymerase dynamics. Sci Adv. 2022;8(10):eabl3522.

  16. Gumerov VM, Rakitin AL, Mardanov AV, Ravin NV. A novel highly thermostable multifunctional beta-glycosidase from crenarchaeon acidilobus saccharovorans. Archaea. 2015;2015: 978632.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang J, Liu SY, Li RM, Hong W, **ao Y, Feng YG, Cui Q, Liu YJ. Efficient whole-cell-catalyzing cellulose saccharification using engineered Clostridium thermocellum. Biotechnol Biofuels. 2017;10:124.

    Article  PubMed  PubMed Central  Google Scholar 

  18. **a D, Huang P, Li H, Carrero NR. Fast and efficient electrical-thermal responses of functional nanoparticle decorated nanocarbon aerogels. Chem Commun. 2020;56(92):14393–6.

    Article  CAS  Google Scholar 

  19. Wang N, Liu ZX, Ding C, Zhang JN, Sui GR, Jia HZ, Gao XM. High efficiency thermoelectric temperature control system with improved proportional integral differential algorithm using energy feedback technique. IEEE Trans Ind Electron. 2022;69(5):5225–34.

    Article  Google Scholar 

  20. Zhang ZJ, Han QY, Lau JW, **ng BG. Lanthanide-doped upconversion nanoparticles meet the needs for cutting-edge bioapplications: recent progress and perspectives. ACS Mater Lett. 2020;2(11):1516–31.

    Article  CAS  Google Scholar 

  21. Qiao J, Li XF, Qi L. Fluorescent polymer-modified gold nanobipyramids for temperature sensing during photothermal therapy in living cells. Chin Chem Lett. 2022;33(6):3193–6.

    Article  CAS  Google Scholar 

  22. Sun PF, Yu HJ, Liu TT, Li YS, Wang ZS, **ao YF, Dong XP. Efficiently photothermal conversion in a MnOx-based monolithic photothermocatalyst for gaseous formaldehyde elimination. Chin Chem Lett. 2022;33(5):2564–8.

    Article  CAS  Google Scholar 

  23. **ong ZC, Zhu YJ, Qin DD, Yang RL. Flexible salt-rejecting photothermal paper based on reduced graphene oxide and hydroxyapatite nanowires for high-efficiency solar energy-driven vapor generation and stable desalination. ACS Appl Mater Interfaces. 2020;12(29):32556–65.

    Article  CAS  PubMed  Google Scholar 

  24. Sun YK, Qiu SX, Fang ZW, Yang JH, Song XL, **ao SN. Rapid synthesis of oxygen-deficient MoO3-x-rGO composites for synergistic photothermal seawater desalination and photocatalytic sterilization. ACS Sustain Chem Eng. 2023;11:3359–69.

    Article  CAS  Google Scholar 

  25. Yu YJ, Tang DS, Liu CY, Zhang Q, Tang L, Lu YF, **ao HH. Biodegradable polymer with effective near-infrared-II absorption as a photothermal agent for deep tumor therapy. Adv Mater. 2022;34(4):2105976.

    Article  CAS  Google Scholar 

  26. Han QY, Lau JW, Do HC, Zhang ZJ, **ng BG. Near-infrared light brightens bacterial disinfection: recent progress and perspectives. ACS Appl Bio Mater. 2021;4(5):3937–61.

    Article  CAS  PubMed  Google Scholar 

  27. Wang LY, Zhu WS, Zhou Y, Li QS, Jiao LZ, Qiu H, Bing W, Zhang ZJ. A biodegradable and near-infrared light-activatable photothermal nanoconvertor for bacterial inactivation. J Mater Chem B. 2022;10(20):3834–40.

    Article  CAS  PubMed  Google Scholar 

  28. Jiao LZ, Li QS, Li CM, Gu JH, Liu XP, He SJ, Zhang ZJ. Orthogonal light-triggered multiple effects based on photochromic nanoparticles for DNA cleavage and beyond. J Mater Chem B. 2023;11:2367–76.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Li Y, Sun J, Chen H, Zhu Y, Zhao X, Zhang LC, Wang S, Zhang H, Duan X, Shi L, Zhang S, Zhang P, Shao G, Wu M, Wang S, Sun H. Regulation of energetic hot carriers on Pt/TiO2 with thermal energy for photothermal catalysis. Appl Catal, B. 2022;309: 121263.

    Article  CAS  Google Scholar 

  30. Dong HJ, Song N, Yan M, Wu HH, Zhang HB, Ma CC, Wang Y. Fabrication of HRP/Bi2WO6 photoenzyme-coupled artificial catalytic system for efficiently degrading bisphenol A. Chin Chem Lett. 2021;32(6):2047–51.

    Article  CAS  Google Scholar 

  31. Fu QR, Zhang X, Song JB, Yang HH. Plasmonic gold nanoagents for cancer imaging and therapy. View. 2021;2(5):20200149.

    Article  CAS  Google Scholar 

  32. Wang C, Zhang Q, Wang X, Chang H, Zhang S, Tang Y, Xu J, Qi R, Cheng Y. Dynamic modulation of enzyme activity by near-infrared light. Angew Chem Int Ed Engl. 2017;56(24):6767–72.

    Article  CAS  PubMed  Google Scholar 

  33. **g LH, Yang C, Zhang PS, Zeng JF, Li Z, Gao MY. Nanoparticles weaponized with built-in functions for imaging-guided cancer therapy. View. 2020;1(2): doi: e19.

  34. Li Y, Bu M, Chen P, Li X, Chen C, Gao G, Feng Y, Han W, Zhang Z. Characterization of a thermophilic monosaccharide stimulated β-gucosidase from acidothermus cellulolyticus. Chem Res Chin Univ. 2018;34(2):212–20.

    Article  CAS  Google Scholar 

  35. Liu M, Liu T, Chen X, Yang J, Deng J, He W, Zhang X, Lei Q, Hu X, Luo G, Wu J. Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. J Nanobiotechnol. 2018;16(1):89.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (NSFC) (22007083); Zhejiang Provincial Innovation Center of Advanced Textile Technology and the Fundamental Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University (KYY2022004C); the Fundamental Research Funds of Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University (SYY2023B000004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Availability of data and materials

The data and materials in current study are available from the corresponding author on reasonable request.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1795 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Li, Q., Cao, M. et al. NIR Light-Promoted Whole-Cell Catalysis Based on a Light-Harvesting Blackbody Bioreactor. J. Anal. Test. 7, 237–244 (2023). https://doi.org/10.1007/s41664-023-00260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-023-00260-4

Keywords

Navigation