Log in

A Bright Nitrogen-doped-Carbon-Dots based Fluorescent Biosensor for Selective Detection of Copper Ions

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

In this work, a novel fluorescent biosensor has been constructed for rapid detection of Cu(II) via the interaction between the fluorophore groups on the surface of nitrogen-doped-carbon-dots (N-CDs) and ·OH produced from the catalytic reaction between Cu (II) and cysteine (Cys). Specifically, Cu (II) can catalyze the oxidation of Cys to form cystine (Cys–Cys) and hydrogen peroxide (H2O2), and Cu (II) can also catalyze the decomposition of H2O2 to produce hydroxyl radicals (·OH) by the Fenton-like reaction. ·OH can oxidize and destroy the surface structure of N-CDs, resulting in the fluorescence quenching of the N-CDs. Under the optimal experimental conditions, the linear range of Cu (II) is determined to be 0.05–25 μmol L−1, and the limit of detection is 23 nmol L−1 with the limit of quantitation of 77 nmol L−1. Besides, some characterizations are provided to verify the proposed principle. The method has been successfully applied for the detection of Cu (II) in human serum and environmental water with high sensitivity and higher selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dabrowski A, Hubicki Z, Podkościelny P, Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 2004;56(2):91–106.

    Article  CAS  PubMed  Google Scholar 

  2. **ong X, Yanxia L, Wei L, Chunye L, Wei H, Ming Y. Copper content in animal manures and potential risk of soil copper pollution with animal manure use in agriculture. Resour Conserv Recycl. 2010;54(11):985–90.

    Article  Google Scholar 

  3. Sharaff M, Kamat S, Archana G. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils. Ecotoxicol Environ Saf. 2017;138:113–21.

    Article  CAS  PubMed  Google Scholar 

  4. Dudzik CG, Walter ED, Millhauser GL. Coordination features and affinity of the Cu2+ site in the α-synuclein protein of Parkinson’s disease. Biochemistry. 2011;50(11):1771–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Uauy R, Olivares M, Gonzalez M. Essentiality of copper in humans. Am J Clin Nutri. 1998;67(5):952S-959S.

    Article  CAS  Google Scholar 

  6. Brewer GJ, Kanzer SH, Zimmerman EA, Celmins DF, Heckman SM, Dick R. Copper and ceruloplasmin abnormalities in Alzheimer’s disease. Am J Alzheimer’s Dis Other Dement. 2010;25(6):490–7.

    Article  Google Scholar 

  7. Yu M, Yuan R, Shi C, Zhou W, Wei L, Li Z. 1,8-Naphthyridine and 8-hydroxyquinoline modified rhodamine B derivatives: “turn-on” fluorescent and colorimetric sensors for Al3+ and Cu2+. Dyes Pigm. 2013;99(3):887–94.

    Article  CAS  Google Scholar 

  8. Ma Y, Xu G, Wei F, Cen Y, Ma Y, Song Y, Xu X, Shi M, Sohail M, Hu Q. A dual-emissive fluorescent sensor fabricated by encapsulating quantum dots and carbon dots into metal-organic frameworks for the ratiometric detection of Cu2+ in tap water. J Mater Chem C. 2017;5(33):8566–71.

    Article  CAS  Google Scholar 

  9. Hwang J, Hwang MP, Choi M, Seo Y, Jo Y, Son J, Hong J, Choi J. Sensitive detection of copper ions via ion-responsive fluorescence quenching of engineered porous silicon nanoparticles. Sci Rep. 2016;6(1):35565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu Y, Deng M, Zhu T, Tang X, Han S, Huang W, Shi Y, Liu A. The synthesis of water-dispersible zinc doped AgInS2 quantum dots and their application in Cu2+ detection. J Lumin. 2017;192:547–54.

    Article  CAS  Google Scholar 

  11. Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem. 2012;84(14):6220–4.

    Article  CAS  PubMed  Google Scholar 

  12. Zong J, Yang X, Trinchi A, Hardin S, Cole I, Zhu Y, Li C, Muster T, Wei G. Carbon dots as fluorescent probes for “off–on” detection of Cu2+ and l-cysteine in aqueous solution. Biosens Bioelectron. 2014;51:330–5.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed. 2015;54(18):5360–3.

    Article  CAS  Google Scholar 

  14. Wang L, Yin Y, Jain A, Zhou HS. Aqueous phase synthesis of highly luminescent, nitrogen-doped carbon dots and their application as bioimaging agents. Langmuir. 2014;30(47):14270–5.

    Article  CAS  PubMed  Google Scholar 

  15. Qian Z, Ma J, Shan X, Feng H, Shao L, Chen J. Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem Eur J. 2014;20(8):2254–63.

    Article  CAS  PubMed  Google Scholar 

  16. Liu H, Ding J, Zhang K, Ding L. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. TrAC Trends Anal Chem. 2019;118:315–37.

    Article  CAS  Google Scholar 

  17. Ren X, Liu J, Meng X, Wei J, Liu T, Tang F. Synthesis of ultra-stable fluorescent carbon dots from polyvinylpyrrolidone and their application in the detection of hydroxyl radicals. Chem Asian J. 2014;9(4):1054–9.

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, He K, Li H, Zhang Y, Yao S. Analyte-triggered cyclic autocatalytic oxidation amplification combined with an upconversion nanoparticle probe for fluorometric detection of copper(II). Microchim Acta. 2018;185(10):484.

    Article  Google Scholar 

  19. Pecci L, Montefoschi G, Musci G, Cavallini D. Novel findings on the copper catalysed oxidation of cysteine. Amino Acids. 1997;13(3):355–67.

    Article  CAS  Google Scholar 

  20. Yin K, Li B, Wang X, Zhang W, Chen L. Ultrasensitive colorimetric detection of Cu2+ ion based on catalytic oxidation of l-cysteine. Biosens Bioelectron. 2015;64:81–7.

    Article  CAS  PubMed  Google Scholar 

  21. Montalti M, Cantelli A, Battistelli G. Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem Soc Rev. 2015;44(14):4853–921.

    Article  CAS  PubMed  Google Scholar 

  22. Masarwa M, Cohen H, Meyerstein D, Hickman DL, Bakac A, Espenson JH. Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they “Fenton-like” or not? 1. The case of Cu+aq and Cr2+aq. J Am Chem Soc. 1988;110(13):4293–7.

    Article  CAS  Google Scholar 

  23. Ozawa T, Hanaki A. The first ESR spin-trap** evidence for the formation of hydroxyl radical from the reaction of copper(II) complex with hydrogen peroxide in aqueous solution. J Chem Soc Chem Commun. 1991;5:330–2.

    Article  Google Scholar 

  24. Pham AN, **ng G, Miller CJ, Waite TD. Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J Catal. 2013;301:54–64.

    Article  CAS  Google Scholar 

  25. Pecci L, Montefoschi G, Cavallini D. Some new details of the copper-hydrogen peroxide interaction. Biochem Biophys Res Commun. 1997;235(1):264–7.

    Article  CAS  PubMed  Google Scholar 

  26. Eberhardt MK, Ramirez G, Ayala E. Does the reaction of copper(I) with hydrogen peroxide give hydroxyl radicals? A study of aromatic hydroxylation. J Org Chem. 1989;54(25):5922–6.

    Article  CAS  Google Scholar 

  27. Perez-Benito JF. Copper(II)-catalyzed decomposition of hydrogen peroxide: catalyst activation by halide ions. Monatshefte Chem Chem Monthly. 2001;132(12):1477–92.

    Article  CAS  Google Scholar 

  28. Millero FJ, Sharma VK, Karn B. The rate of reduction of copper(II) with hydrogen peroxide in seawater. Mar Chem. 1991;36(1):71–83.

    Article  CAS  Google Scholar 

  29. Ran X, Sun H, Pu F, Ren J, Qu X. Ag Nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols. Chem Commun. 2013;49(11):1079–81.

    Article  CAS  Google Scholar 

  30. Wu H, Jiang J, Gu X, Tong C. Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe(III) ions and l-cysteine. Microchim Acta. 2017;184(7):2291–8.

    Article  CAS  Google Scholar 

  31. Zhang Y, Cui P, Zhang F, Feng X, Wang Y, Yang Y, Liu X. Fluorescent probes for “off-on” highly sensitive detection of Hg2+ and l-cysteine based on nitrogen-doped carbon dots. Talanta. 2016;152:288–300.

    Article  CAS  PubMed  Google Scholar 

  32. Qu S, Wang X, Lu Q, Liu X, Wang L. A Biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem-Int Edit. 2012;51(49):12215–8.

    Article  CAS  Google Scholar 

  33. Li D, Zhou W, Chai Y, Yuan R, **ang Y. Click chemistry-mediated catalytic hairpin self-assembly for amplified and sensitive fluorescence detection of Cu2+ in human serum. Chem Commun. 2015;51(63):12637–40.

    Article  CAS  Google Scholar 

  34. Deng Y, Zhao D, Chen X, Wang F, Song H, Shen D. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem Commun. 2013;49(51):5751–3.

    Article  CAS  Google Scholar 

  35. Qu D, Zheng M, Li J, **e Z, Sun Z. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light Sci Appl. 2015;4(12):e364.

    Article  CAS  Google Scholar 

  36. **a C, Zhu S, Feng T, Yang M, Yang B. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv Sci. 2019;6(23):1901316.

    Article  CAS  Google Scholar 

  37. Li S, Li Y, Cao J, Zhu J, Fan L, Li X. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal Chem. 2014;86(20):10201–7.

    Article  CAS  PubMed  Google Scholar 

  38. Li Z, Yu H, Bian T, Zhao Y, Zhou C, Shang L, Liu Y, Wu L, Tung C, Zhang T. Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. J Mater Chem C. 2015;3(9):1922–8.

    Article  CAS  Google Scholar 

  39. Dong Y, Pang H, Yang H, Guo C, Shao J, Chi Y, Li C, Yu T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed. 2013;52(30):7800–4.

    Article  CAS  Google Scholar 

  40. Yang Z-C, Li X, Wang J. Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process. Carbon. 2011;49(15):5207–12.

    Article  CAS  Google Scholar 

  41. Li W, Zhang Z, Kong B, Feng S, Wang J, Wang L, Yang J, Zhang F, Wu P, Zhao D. Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew Chem Int Ed. 2013;52(31):8151–5.

    Article  CAS  Google Scholar 

  42. Li H, Kong W, Liu J, Liu N, Huang H, Liu Y, Kang Z. Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon. 2015;91:66–75.

    Article  CAS  Google Scholar 

  43. Vallan L, Urriolabeitia EP, Ruipérez F, Matxain JM, Canton-Vitoria R, Tagmatarchis N, Benito A, Maser W. Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots. J Am Chem Soc. 2018;140(40):12862–9.

    Article  CAS  PubMed  Google Scholar 

  44. Guo Y, Zhao W. Hydrothermal synthesis of highly fluorescent nitrogen-doped carbon quantum dots with good biocompatibility and the application for sensing ellagic acid. Spectrochim Acta Part A Mol Biomol Spectrosc. 2020;240:118580.

    Article  CAS  Google Scholar 

  45. Zhu A, Qu Q, Shao X, Kong B, Tian Y. Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew Chem Int Ed. 2012;51(29):7185–9.

    Article  CAS  Google Scholar 

  46. Huang S, Wang L, Huang C, **e J, Su W, Sheng J, Qi X. A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin. Sens Actuators B Chem. 2015;221:1215–22.

    Article  CAS  Google Scholar 

  47. Hollett G, Roberts DS, Sewell M, Wensley E, Wagner J, Murray W, Krotz A, Toth B, Vijayakumar V, Sailor M. Quantum ensembles of silicon nanoparticles: discrimination of static and dynamic photoluminescence quenching processes. J Phys Chem C. 2019;123(29):17976–86.

    Article  CAS  Google Scholar 

  48. Wang X, Zhang L. Kinetic study of hydroxyl radical formation in a continuous hydroxyl generation system. RSC Adv. 2018;8(71):40632–8.

    Article  CAS  Google Scholar 

  49. Chen Y, Yang S, Wang K, Lou L. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of acid orange 7. J Photochem Photobiol A. 2005;172(1):47–54.

    Article  CAS  Google Scholar 

  50. Chen X, Lu Q, Liu D, Wu C, Liu M, Li H, Zhang Y, Yao S. Highly sensitive and selective determination of copper(II) based on a dual catalytic effect and by using silicon nanoparticles as a fluorescent probe. Microchim Acta. 2018;185(3):185–8.

    Article  Google Scholar 

  51. Erogbogbo F, Yong K-T, Roy I, Xu G, Prasad PN, Swihart MT. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano. 2008;2(5):873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bogart LKP, Genevieve P, Murphy CJ, Puntes V, Pellegrino T, Rosenblum D, Peer D, Raphael L. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano. 2014;8:3107–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kouremenou-Dona E, Dona A, Papoutsis J, Spiliopoulou C. Copper and zinc concentrations in serum of healthy Greek adults. Sci Total Environ. 2006;359(1):76–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (21775026, 21904020, 21974020), the Program for Changjiang Scholars and Innovative Research Team in University (IRT15R11), the cooperative project of production and study in the University of Fujian Province (2018Y4007), the Sciences Foundation of Fujian Province (2018J05018, 2018J01685, 2018J01682), “Thirteenth Five-Year Plan” Marine Economy Innovation and Development Demonstration Project (FZHJ19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Luo or Zhenyu Lin.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 923 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Chen, C., Wang, J. et al. A Bright Nitrogen-doped-Carbon-Dots based Fluorescent Biosensor for Selective Detection of Copper Ions. J. Anal. Test. 5, 84–92 (2021). https://doi.org/10.1007/s41664-021-00162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-021-00162-3

Keywords

Navigation