Log in

UV Spectroscopic Method for Optimization and Determination of Glibenclamide in Bulk, Pharmaceutical Dosage Form and its Application for In Vitro Interaction Studies

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

A simple, easy and cost-efficient UV spectroscopic method was developed and validated for glibenclamide, the second generation of sulfonylureas, using 0.1 N NaOH as a solvent. The proposed method is linear (R2 > 0.999) with the range 5–25 µg mL−1, accurate (99.60%), precise (inter and intraday variation 0.241 and 0.019%, respectively) and robust (< 1%). The quantification and detection limit were 1.46 and 0.48 μg mL−1, respectively. The validated method was applied for in vitro interaction studies of glibenclamide (GLB) with commonly prescribed quinolones (ciprofloxacin, levofloxacin, moxifloxacin, and gemifloxacin) and nonsteroidal anti-inflammatory drugs (NSAIDs) (diclofenac sodium, ibuprofen, mefenamic acid, and aspirin) using UV spectrophotometer. The in vitro interaction studies were carried out in different artificially prepared physiological buffers at 37 °C for 2 h. Results showed raised level of glibenclamide when interacted with gemifloxacin (pH 7.4), levofloxacin (pH 9), ciprofloxacin (pH 4.5) and with moxifloxacin (pH 4.5, 7.4 and 9). Interaction with NSAIDs results in increased %availability of glibenclamide in the presence of diclofenac sodium, ibuprofen, and mefenamic acid at pH 4.5. The anticipated method can be successfully applied for the routine analysis and also for the interaction of glibenclamide with other drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Campbell RK, Neumiller JJ, White J, Sisson E, Kuhn C. Type 2 diabetes: epidemiology and treatment, pathophysiology, new therapeutics, and the evolving role of the pharmacist. J Am Pharm Assoc. 2009;49:S2.

    Article  Google Scholar 

  2. Mirza AZ, Arayne MS, Sultana N, Qureshi F. Spectroscopic study to characterize in vitro interaction of losartan with gliquidone and pioglitazone. Med Chem Res. 2013;22:351–9.

    Article  CAS  Google Scholar 

  3. Azharshekoufeh L, Shokri J, Barzegar-JM Javadzadeh Y. Liquigroud technique: a new concept for enhancing dissolution rate of glibenclamide by combination of liquisolid and co-grinding technologies. BioImpacts. 2017;7(1):5.

    Article  CAS  Google Scholar 

  4. Jadna Silva Frederico M, A Jhonatan Gomes Castro, Menegaz D, De Bernardis M, Pires Mendes C, Mascarello A, Jose Nunes R, Regina Mena Barreto Silva F. Mechanism of action of novel glibenclamide derivatives on potassium and calcium channels for insulin secretion. Curr Drug Targets. 2017;18(6):641–50.

    Article  Google Scholar 

  5. Sanz D, Claramunt RM, Alkorta I, Sánchez-Sanz G, Elguero J. The structure of glibenclamide in the solid state. Magn Reson Chem. 2012;50(3):246–55.

    Article  CAS  Google Scholar 

  6. Bartsch SE, Griesser UJ. Physicochemical properties of the binary system glibenclamide and polyethylene glycol 4000. J Therm Anal Calorim. 2004;77(2):555–69.

    Article  CAS  Google Scholar 

  7. Murad MH, Coto-Yglesias F, Wang AT, Sheidaee N, Mullan RJ, Elamin MB, Erwin PJ, Montori VM. Drug-induced hypoglycemia: a systematic review. J Clin Endocrinol Metab. 2009;94(3):741–5.

    Article  CAS  Google Scholar 

  8. Niopas I, Daftsios AC. A validated high-performance liquid chromatographic method for the determination of glibenclamide in human plasma and its application to pharmacokinetic studies. J Pharm Biomed Anal. 2002;28(3):653–7.

    Article  CAS  Google Scholar 

  9. Ruzilawati AB, Wahab MS, Imran A, Ismail Z, Gan SH. Method development and validation of repaglinide in human plasma by HPLC and its application in pharmacokinetic studies. J Pharm Biomed Anal. 2007;43(5):1831–5.

    Article  CAS  Google Scholar 

  10. Venkatesh P, Harisudhan T, Choudhury H, Mullangi R, Srinivas NR. Simultaneous estimation of six anti-diabetic drugs—glibenclamide, gliclazide, glipizide, pioglitazone, repaglinide and rosiglitazone: development of a novel HPLC method for use in the analysis of pharmaceutical formulations and its application to human plasma assay. Biomed Chromatogr. 2006;20(10):1043–8.

    Article  CAS  Google Scholar 

  11. El Deeb S, Schepers U, Wätzig H. Fast HPLC method for the determination of glimepiride, glibenclamide, and related substances using monolithic column and flow program. J Sep Sci. 2006;29(11):1571–7.

    Article  Google Scholar 

  12. Chaturvedi PC, Sharma R. Development and validation of an RP-HPLC method for simultaneous analysis of a three-component tablet formulation containing metformin hydrochloride, pioglitazone hydrochloride, and glibenclamide. Acta Chromatogr. 2008;20(3):451–61.

    Article  CAS  Google Scholar 

  13. Mistri HN, Jangid AG, Shrivastav PS. Liquid chromatography tandem mass spectrometry method for simultaneous determination of antidiabetic drugs metformin and glyburide in human plasma. J Pharm Biomed Anal. 2007;45(1):97–106.

    Article  CAS  Google Scholar 

  14. Koteshwara KB, Anup N, Sunil P, Kiran S. Method development and validation of glibenclamide in tablet dosage form by using RP-HPLC. J Harmon Res. 2013;2(4):226–30.

    CAS  Google Scholar 

  15. Losasso C, Loffreda A, Angrisani M, Marabese I, Vacca C, Rossi F. Pharmacologic interactions between quinolones and oral hypoglycemic agents An experimental study on rabbits. Giornale Italiano di Chemioterapia. 1992;39(1–3):1–4.

    CAS  PubMed  Google Scholar 

  16. Davey PG. Overview of drug interactions with the quinolones. J Antimicrob Chemother. 1988;22(Supplement_C):97–107.

    Article  CAS  Google Scholar 

  17. León-Reyes MR, Castañeda- HG, Ortiz MI. Pharmacokinetics and pharmacodynamics of diclofenac in the presence and absence of glibenclamide in the rat. J Pharm Pharm Sci. 2008;11(3):68–76.

    Article  Google Scholar 

  18. León-Reyes MR, Castañeda-HG Ortiz MI. Pharmacokinetic of diclofenac in the presence and absence of glibenclamide in the rat. J Pharm Pharm Sci. 2009;12(3):280–7.

    Article  Google Scholar 

  19. Ortiz MI. Synergistic interaction between metformin and sulfonylureas on diclofenac-induced antinociception measured using the formalin test in rats. Pain Res Manag. 2013;18(5):253–8.

    Article  Google Scholar 

  20. Roberge RJ, Kaplan R, Frank R, Fore C. Glyburide-ciprofloxacin interaction with resistant hypoglycemia. Ann Emerg Med. 2000;36(2):160–3.

    Article  CAS  Google Scholar 

  21. Somia G, Najma S, Muhammad SA, Sana S, Mahwish A. New method for optimization and simultaneous determination of sparfloxacin and non steroidal anti-inflammatory drugs: its in vitro application. Am J Anal Chem. 2012;3(4):328–37.

    Article  Google Scholar 

  22. Sultana N, Arayne MS, Gul S, Akhtar M, Shamim S. Simultaneous determination of sparfloxacin and commonly used H2 receptor antagonists by RP-HPLC: application to in vitro drug interactions. Med Chem Res. 2012;21(7):974–82.

    Article  CAS  Google Scholar 

  23. Shafi N, Siddiqui FA, Arayne MS, Sultana N. In-vitro drug–drug interaction studies of diltiazem with floroquinolones. J Liq Chromatogr Relat Technol. 2017;40(20):1003–14.

    Article  CAS  Google Scholar 

  24. Mirza AZ, Arayne MS, Sultana N. HPLC method development, validation and its application to investigate in vitro effect of pioglitazone on the availability of H1 receptor antagonists. J Assoc Arab Univ Basic Appl Sci. 2017;22(1):70–5.

    Google Scholar 

  25. Tandon N, Gupta R, Gupta N. Interactions of ceftiofur sodium with H2-receptor antagonist. Indian J Pharm Sci. 2020;82(1):114–22.

    Article  CAS  Google Scholar 

  26. Tiwari G, Tiwari R. Bioanalytical method validation: an updated review. Pharm Methods. 2010;1(1):25–38.

    Article  Google Scholar 

  27. Araujo P. Key aspects of analytical method validation and linearity evaluation. J Chromatogr B. 2009;877(23):2224–34.

    Article  CAS  Google Scholar 

  28. Gul S, Akhtar F. Spectrophotometric method development, validation and estimation of cefuroxime in marketed tablet dosage form. Ann Chem. 2016;1(1):1–6.

    Google Scholar 

  29. Sultana N, Akhtar M, Shamim S, Gul S, Arayne MS. Simultaneous determination of moxifloxacin and H2 receptor antagonist in pharmaceutical dosage formulations by RP-HPLC: application to in vitro drug interactions. Quim Nova. 2011;34(4):683–8.

    Article  CAS  Google Scholar 

  30. Somia G, Sania B. UV visible spectrophotometric determination, validation and invitro interaction of rabeprazole with chlorazepate. Saudi J Med Pharm Sci. 2017;3(8):813–7.

    Google Scholar 

  31. Balsells M, García PA, Solà I, Roqué M, Gich I, Corcoy R. Glibenclamide, metformin, and insulin for the treatment of gestational diabetes: a systematic review and meta-analysis. BMJ. 2015;350:h102.

    Article  Google Scholar 

  32. Guideline, ICH Harmonised Tripartite. Validation of Analytical Procedures: Methodology, ICHQ2B. London, UK: CPMP/ICH281/95, 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somia Gul.

Ethics declarations

Conflict of interest

No potential conflict of interest has been found.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, F., Somia Gul, Ashfaq, S. et al. UV Spectroscopic Method for Optimization and Determination of Glibenclamide in Bulk, Pharmaceutical Dosage Form and its Application for In Vitro Interaction Studies. J. Anal. Test. 4, 281–290 (2020). https://doi.org/10.1007/s41664-020-00146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-020-00146-9

Keywords

Navigation