Log in

Effect of the TiO2 solution combined with 980-nm diode laser on the bond strength of the root canal filling

  • Original Article
  • Published:
Lasers in Dental Science Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the effect of the 5% titanium dioxide particles (TiO2) combined with 980-nm diode laser irradiation on the bond strength and quality of the root canal filling.

Methods

Forty-eight bovine incisors were prepared and divided into four groups according to the dentin treatments’ protocols: distilled water, 5% TiO2 solution, 980-nm diode laser irradiation, or TiO2 combined with diode laser. The canals were dried and filled with AH Plus. The push-out test was performed, followed by the failure analysis, and the interface morphology was analyzed under SEM.

Results

The TiO2 combined with the diode laser had the highest bond strength (p < 0.001). The lower bond strength values were found in distilled water and TiO2 groups. No difference was found among thirds (p = 0.675) and interactions of the factors (p = 0.748). The SEM analysis showed better sealer adaptation and penetration into the canal walls after the combined treatment.

Conclusion

5% TiO2 solution combined with 980-nm diode laser irradiation improved the bond strength of the root canal filling and the quality of the adhesion interface. The TiO2 solution could be a promising tool used for light scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sui HX, Lv PJ, Wang YG, Wang Y, Sun YC (2017) Effect of low-level laser irradiation on proliferation and osteogenic differentiation of human adipose-derived stromal cells. Bei**g Da Xue Xue Bao Yi Xue Ban 49:337–343. https://doi.org/10.3969/j.issn.1671-167X.2017.02.027

    Article  PubMed  Google Scholar 

  2. Kaplan T, Sezgin GP, Sönmez Kaplan S (2021) Effect of a 980-nm diode laser on post-operative pain after endodontic treatment in teeth with apical periodontitis: a randomized clinical trial. BMC Oral Health 21:41. https://doi.org/10.1186/s12903-021-01401-w

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pelozo LL, Silva-Neto RD, Salvador SL, Sousa-Neto MD, Souza-Gabriel AE (2023) Adjuvant therapy with a 980-nm diode laser in root canal retreatment: randomized clinical trial with 1-year follow-up. Lasers Med Sci 38:77. https://doi.org/10.1007/s10103-022-03659-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Morsy DA, Negm M, Diab A, Ahmed G (2018) Postoperative pain and antibacterial effect of 980 nm diode laser versus conventional endodontic treatment in necrotic teeth with chronic periapical lesions: A randomized control trial. F1000Res 7:1795. https://doi.org/10.5005/jp-journals-10024-2976

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dash S, Ismail PM, Singh J, Agwan MA, Ravikumar K, Annadurai T (2020) Assessment of Effectiveness of Erbium:Yttrium-Aluminum-Garnet Laser, GentleWave Irradiation, Photodynamic Therapy, and Sodium Hypochlorite in Smear Layer Removal. J Contemp Dent Pract 21:1266–1269

    Article  PubMed  Google Scholar 

  6. Kushwah J, Mishra R, Bhadauria V (2020) Antibacterial Efficacy of Sodium Hypochlorite, Ozonated Water, and 980 nm Diode Laser Used for Disinfection of Root Canal against Enterococcus faecalis: A Microbiological Study. Int J Clin Pediatr Dent 13:694–699. https://doi.org/10.5005/jp-journals-10005-1860

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sreedev CP, Raju I, Kumaravadivel K, Mathew S, Thangavel B, Natesan Thangaraj D (2020) Influence of Different Types of Root Canal Irrigation Regimen on Resin-based Sealer Penetration and Pushout Bond Strength. Cureus 12:e7807. https://doi.org/10.7759/cureus.7807

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hajizadeh H, Nemati-Karimooy A, Babaee-Rishkhori P (2019) Effect of Erbium:Yttrium-Aluminum-Garnet Laser Combined with Mineralizing Agents on Microhardness of Demineralized Dentin. Eur J Dent 13:11–16. https://doi.org/10.1055/s-0039-1688730

    Article  PubMed  PubMed Central  Google Scholar 

  9. Al-Maliky MA, Zardawi FM, Meister J, Frentzen M, Al-Karadaghi TS (2022) Transmission of 940 nm diode laser to the radicular area during its application as root canal disinfectant. Aust Endod J 48:65–71. https://doi.org/10.1111/aej.12591

    Article  PubMed  Google Scholar 

  10. Minas NH, Meister J, Franzen R, Gutknecht N, Lampert F (2010) In vitro investigation of intra-canal dentine-laser beam interaction aspects: I. Evaluation of ablation capability (ablation rate and efficiency). Lasers Med Sci 25:835–840. https://doi.org/10.1007/s10103-009-0701-4

    Article  PubMed  Google Scholar 

  11. Luk K, Zha IS, Yu OY, Mei ML, Gutknecht N, Chu CH (2020) Caries Prevention Effects of Silver Diamine Fluoride with 10,600 nm Carbon Dioxide Laser Irradiation on Dentin. Photobiomodul Photomed Laser Surg 38:295–300. https://doi.org/10.1016/j.dental.2021.02.017

    Article  PubMed  Google Scholar 

  12. Zhao IS, Xue VW, Yin IX, Niu JY, Lo ECM, Chu CH (2021) Use of a novel 9.3-μm carbon dioxide laser and silver diamine fluoride: Prevention of enamel demineralisation and inhibition of cariogenic bacteria. Dent Mater 37:940–948. https://doi.org/10.1016/j.dental.2021.02.017

    Article  PubMed  Google Scholar 

  13. Xue VW, Yin IX, Niu JY, Lo ECM, Chu CH, Zhao IS (2022) Effects of a 445 nm diode laser and silver diamine fluoride in preventing enamel demineralisation and inhibiting cariogenic bacteria. J Dent 126:104309. https://doi.org/10.1016/j.jdent.2022.104309

    Article  PubMed  Google Scholar 

  14. AlSubaie AA, Sarfraz Z, AlAli AA, AlEssa AE, Subaie HAA, Shah AT et al (2019) Effect of nano-zinc oxide and fluoride-doped bioactive glass-based dentifrices on esthetic restorations. Dent Med Probl 56:59–65. https://doi.org/10.17219/dmp/103597

    Article  PubMed  Google Scholar 

  15. Schneider SL, Lim HW (2019) A review of inorganic UV filters zinc oxide and titanium dioxide. Photodermatol Photoimmunol Photomed 35:442–446. https://doi.org/10.1111/phpp.12439

    Article  PubMed  Google Scholar 

  16. Masaaki W, Furumoto T, Sugihara N, Ueda T (2011) Combined Effect of Nd:YAG Laser and TiO2 on Bactericidal Action (2nd report). J Jpn Soc Laser Dent 22:77–84. https://doi.org/10.5984/jjpnsoclaserdent.19.10

    Article  Google Scholar 

  17. Arata E, Tomoo A, Atsushi T, Hideaki S (2004). The surface of root canal irradiated by Nd:YAG laser with TiO2. Lasers in Dentistry X Proc. SPIE 5313. https://doi.org/10.1117/12.528912

  18. Jowkar Z, Hamidi SA, Shafiei F, Ghahramani Y (2020) The Effect of Silver, Zinc Oxide, and Titanium Dioxide Nanoparticles Used as Final Irrigation Solutions on the Fracture Resistance of Root-Filled Teeth. Clin Cosmet Investig Dent 12:141–148. https://doi.org/10.2147/CCIDE.S253251

    Article  PubMed  PubMed Central  Google Scholar 

  19. Al-Saleh S, Vohra F, Alateeq A, Alshaya AH, Alotaibi MS, Alhamdan MM et al (2022) Strength of fiber posts with experimental TiO2 and ZrO2 particle bonding—An SEM, EDX, rheometric and push-out strength study. Coatings 12:1176. https://doi.org/10.3390/coatings12081176

    Article  Google Scholar 

  20. Faria MI, Sousa-Neto MD, Souza-Gabriel AE, Alfredo E, Romeo U, Silva-Sousa YT (2013) Effects of 980-nm diode laser on the ultrastructure and fracture resistance of dentine. Lasers Med Sci 28:275–280. https://doi.org/10.1007/s10103-012-1147-7

    Article  PubMed  Google Scholar 

  21. Walia V, Goswami M, Mishra S, Walia N, Sahay D (2019) Comparative Evaluation of the Efficacy of Chlorhexidine, Sodium Hypochlorite, the Diode Laser and Saline in Reducing the Microbial Count in Primary Teeth Root Canals - An In Vivo Study. J Lasers Med Sci 10:268–274. https://doi.org/10.15171/jlms.2019.44

    Article  PubMed  PubMed Central  Google Scholar 

  22. Silva EJNL, Carvalho NK, Prado MC, Senna PM, Souza EM, De-Deus G (2019) Bovine teeth can reliably substitute human dentine in an intra-tooth push-out bond strength model? Int Endod J 52:1063–1069. https://doi.org/10.1111/iej.13085

    Article  PubMed  Google Scholar 

  23. Abdelgawad LM, ElShafei NAA, Eissa SA, Ibrahim DY (2022) Efficacy of Photoinduced Photoacoustic Streaming and Diode Laser Irrigation Techniques on Smear Layer Removal, Sealer Penetration and Push-out Bond Strength. J Lasers Med Sci 13:e12. https://doi.org/10.34172/jlms.2022.12

    Article  PubMed  PubMed Central  Google Scholar 

  24. Das M, Kumar GA, Ramesh S, Garapati S, Sharma D (2013) An in vitro evaluation of microtensile bond strength of resin-based sealer with dentin treated with diode and Nd:YAG laser. J Contemp Dent Pract 14:183–187. https://doi.org/10.5005/jp-journals-10024-1297

    Article  PubMed  Google Scholar 

  25. Mohammadian F, Soufi S, Dibaji F, Sarraf P, Chiniforush N, Kharrazifard MJ (2019) Push-out bond strength of calcium-silicate cements following Er:YAG and diode laser irradiation of root dentin. Lasers Med Sci 34:201–207. https://doi.org/10.1007/s10103-018-02705-0

    Article  PubMed  Google Scholar 

  26. Borges CC, Palma-Dibb RG, Rodrigues FCC, Plotegher F, Rossi-Fedele G, de Sousa-Neto MD et al (2020) The Effect of Diode and Er, Cr:YSGG Lasers on the Bond Strength of Fiber Posts. Photobiomodul Photomed Laser Surg 38:66–74. https://doi.org/10.1089/photob.2019.4668

    Article  PubMed  Google Scholar 

  27. Ekstein SF, Hylwa S (2023) Sunscreens: A Review of UV Filters and Their Allergic Potential. Dermatitis 34:176–190. https://doi.org/10.1097/DER.0000000000000963

    Article  PubMed  Google Scholar 

  28. Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L (2020) Biomedical Applications of TiO2 Nanostructures: Recent Advances. Int J Nanomedicine 15:3447–3470. https://doi.org/10.2147/IJN.S249441

    Article  PubMed  PubMed Central  Google Scholar 

  29. Besinis A, De Peralta T, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8:1–16. https://doi.org/10.3109/17435390.2012.742935

    Article  PubMed  Google Scholar 

  30. Augusto CM, Cunha Neto MA, Pinto KP, Barbosa AFA, Silva EJNL, Dos Santos APP, Sassone LM (2022) Influence of the use of chelating agents as final irrigant on the push-out bond strength of epoxy resin-based root canal sealers: A systematic review. Aust Endod J 48:347–363. https://doi.org/10.1111/aej.12563

    Article  PubMed  Google Scholar 

  31. Araujo VLC, Cruvinel PB, Palma-Dibb RG, Gariba-Silva R (2018) In vitro bond strength of an epoxy resin-based root canal sealer to root dentin irradiated with high-power lasers and adhesive interface analyses. Lasers Med Sci 33:271–277. https://doi.org/10.1007/s10103-017-2362-z

    Article  PubMed  Google Scholar 

  32. Lagopati N, Evangelou K, Falaras P, Tsilibary EC, Vasileiou PVS, Havaki S, Angelopoulou A, Pavlatou EA, Gorgoulis VG (2021) Nanomedicine: Photo-activated nanostructured titanium dioxide, as a promising anticancer agent. Pharmacol Ther 222:107795. https://doi.org/10.1016/j.pharmthera.2020.107795

    Article  PubMed  Google Scholar 

  33. Kheder W, Al Kawas S, Khalaf K, Samsudin AR (2021) Impact of tribocorrosion and titanium particles release on dental implant complications - A narrative review. Jpn Dent Sci Rev 57:182–189. https://doi.org/10.1016/j.jdsr.2021.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  34. de Souza CG, de Souza W, Lima TSM, Bonfim DC, Werckmann J, Archanjo BS, Granjeiro JM, Ribeiro AR, Gemini-Piperni S (2023) The Effects of Titanium Dioxide Nanoparticles on Osteoblasts Mineralization: A Comparison between 2D and 3D Cell Culture Models. Nanomaterials (Basel) 13:425. https://doi.org/10.3390/nano13030425

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

All authors have contributed significantly and are in agreement with the manuscript.

Funding

This work was supported by CAPES (Coordination for the Improvement of Higher Education Personnel – Brazil). The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Pelozo LL.: methodology and writing — original draft. Souza-Gabriel A.E.: supervision, resources, and writing — review and editing. Struciatti J.: conceptualization, methodology, investigation, and data curation. Cruz-Filho AM.: visualization and resources. Savioli RN.: software, validation, formal analysis, and project administration.

Corresponding author

Correspondence to Laís Lima Pelozo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelozo, L.L., Souza-Gabriel, A.E., Struciatti, J. et al. Effect of the TiO2 solution combined with 980-nm diode laser on the bond strength of the root canal filling. Laser Dent Sci 7, 227–233 (2023). https://doi.org/10.1007/s41547-023-00201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41547-023-00201-5

Keywords

Navigation