Log in

The Faja Eruptiva of the Eastern Puna and the Sierra de Calalaste, NW Argentina: U–Pb zircon chronology of the early Famatinan orogeny

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

The Famatinian is a segment of the Ordovician Terra Australis accretionary orogen that stretched along the SW Margin of Gondwana from Australia to Colombia. The present knowledge of this orogenic segment still is incomplete. We present geochemistry and U–Pb SHRIMP zircon geochronology of igneous and metamorphic rocks from the Central Famatinian Domain, one of the several domains recognized by Rapela et al. (Earth Sci Rev 187: 259–285. https://doi.org/10.1016/j.earscirev.2018.10.006) that includes the northern Sierras Pampeanas and the southern Puna of North West Argentina. Six samples of igneous rocks (peraluminous granitoids, mafic and felsic rocks, volcanic/subvolcanic rocks) and six samples of associated meta-sedimentary rocks, all from the Puna were dated and chemically analysed. The results indicate that the Central Famatinian Domain is in turn a composite domain that includes a Cordilleran-type magmatic arc (ca. 470 Ma) and a yuxtaposed fault-bounded older terrain formed in an extensional setting at the very start of the Famatinian orogeny, between 480 and 485 Ma, i.e., shortly after the SW Gondwana margin switched from passive to active. This short period of extension with related sedimentation, volcanism and mainly granitoid plutonism has not been previously recognised. It occurred before the Cordilleran-type magmatic arc -that resulted from a magmatic flare-up between ca. 473 and 468 Ma-, set up coincident with a contractional phase. The evidence confirms that accretionary orogeny results from tectonic switching (pull–push orogeny) and that the extensional and contractional phases are of relatively short duration.

Resumen

El cinturón Famatiniano es un segmento del orógeno acreccionario ordovícico Terra Australis, que se extendía a lo largo del margen SW de Gondwana desde Australia hasta Colombia. El conocimiento de este cinturón es todavía muy incompleto. En este trabajo se ha realizado geoquímica y geocronología U-Pb SHRIMP en circón en rocas ígneas y metamórficas del Dominio Famatiniano Central (Rapela et al., 2016) en el norte de las Sierras Pampeanas y el sur de la Puna en el noroeste de Argentina. Se han datado y analizado químicamente seis muestras de rocas ígneas (granitoides peraluminosos y rocas volcánicas/subvolcánicas maficas y felsicas) y seis muestras de rocas metasedimentarias asociadas, de la Puna meridional, principalmente. Los resultados indican que el Dominio Famatiniano Central es un dominio compuesto, que incluye un arco magmático de tipo Cordillerano con magmatismo de tipo I (ca. 470 Ma) y un terreno más antiguo, yuxtapuestos en la actualidad mediante fallas ándicas. Este último se formó en un contexto de extensión al comienzo de la orogénesis Famatiniana, entre ca. 480 y 485 Ma., en el margen SO de Gondwana, poco después de que cambiara de pasivo a activo. Este breve período de extensión, con sedimentación relacionada, vulcanismo y, principalmente, plutonismo granitoide, no había sido reconocido previamente y tuvo lugar antes de que se instalara el arco magmático de tipo Cordillerano como resultado de un flare-up magmático entre 473 y 468 Ma, coincidente, a su vez, con una fase de contracción. Esta evidencia confirma que la orogénesis acreccionaria es el resultado de la permutación tectónica (tectonic switching) entre fases de extensión y contracción (pull-push orogeny) y que estas son de duración relativamente corta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified after Suzaño et al. (2017b)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aceñolaza, F., Toselli, A. & Durand, F. (1976). Estratigrafía y paleontología de la región del Hombre Muerto, provincia de Catamarca, Argentina. Actas 1° Congreso Argentino de Paleontología y Bioestratigrafía, 1, 109–123. Tucumán.

  • Adams, C. J., Miller, H., Aceñolaza, F. G., Toselli, A. J., & Griffin, W. L. (2011). The Pacific Gondwana margin in the late Neoproterozoic–early Paleozoic: detrital zircon U–Pb ages from metasediments in northwest Argentina reveal their maximum age, provenance and tectonic setting. Gondwana Research, 19, 71–83. https://doi.org/10.1016/j.gr.2010.05.002.

    Article  Google Scholar 

  • Adams, C., Miller, H., Toselli, A. J., & Griffin, W. L. (2008). The Puncoviscana Formation of northwest Argentina: U–Pb geochronology of detrital zircons and Rb–Sr metamorphic ages and their bearing on its stratigraphic age, sediment provenance and tectonic setting. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 247, 341–352. https://doi.org/10.1127/0077-7749/2008/0247-0341.

    Article  Google Scholar 

  • Alasino, P. H., Casquet, C., Larrovere, M. A., Pankhurst, R. J., Galindo, C., Dahlquist, J. A., et al. (2014). The evolution of a mid-crustal termal aureole at Cerro Toro, Sierra de Famatina, NW Argentina. Lithos, 190(191), 154–172. https://doi.org/10.1016/j.lithos.2013.12.006.

    Article  Google Scholar 

  • Bahlburg, H., Berndt, J. & Gerdes, A. (2016). The ages and tectonic setting of the Faja Eruptiva de la Puna Oriental, Ordovician, NW Argentina. Lithos, 256–25, 41–54, ISSN 0024-4937, https://doi.org/10.1016/j.lithos.2016.03.018.

  • Bahlburg, H., & Hervé, F. (1997). Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile. Geological Society of America Bulletin, 109(7), 869–884. https://doi.org/10.1130/0016-7606(1997)109%3c0869:GEATTO%3e2.3.CO;2.

    Article  Google Scholar 

  • Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, J. N. D., Korsch, R. J., et al. (2003). TEMORA 1: A new zircon standard for Phanerozoic U–Pb geochronology. Geochimica et Cosmochimica Acta, 97, 70–87.

    Google Scholar 

  • Casquet, C., Dahlquist, J. A., Verdecchia, S. O., Baldo, E. G., Galindo, C., Rapela, C. W., et al. (2018). Review of the Cambrian Pampean orogeny of Argentina; a displaced orogen formerly attached to the Saldania Belt of South Africa. Earth-Science Reviews, 177, 209–225. https://doi.org/10.1016/j.earscirev.2017.11.013.

    Article  Google Scholar 

  • Casquet, C., Fanning, C. M., Galindo, C., Pankhurst, R. J., Rapela, C. W., & Torres, P. (2010). The Arequipa Massif of Peru: new SHRIMP and isotope constraints on a Paleoproterozoic inlier in the Grenvillian. Journal of South American Earth Sciences, 29, 128–142. https://doi.org/10.1016/j.jsames.2009.08.0.

    Article  Google Scholar 

  • Casquet, C., Rapela, C. W., Pankhurst, R. J., Baldo, E. G., Galindo, C., Fanning, C. M. &, Dahlquist, J. A. (2012a). Fast sediment underplating and essentially coeval juvenile magmatism in the Ordovician margin of Gondwana, Western Sierras Pampeanas, Argentina. Gondwana Research, 22(2), 664–673. ISSN 1342 937X. https://doi.org/10.1016/j.gr.2012.05.001.

  • Casquet, C., Rapela, C. W., Pankhurst, R. J., Baldo, E. G., Galindo, C., Fanning, C. M., et al. (2012b). A history of Proterozoic terranes in southern South America: from Rodinia to Gondwana. Geoscience Frontiers, 3, 137–145. https://doi.org/10.1016/j.gsf.2011.11.004.

    Article  Google Scholar 

  • Cawood, P. A. (2005). Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews, 69, 249–279. https://doi.org/10.1016/j.earscirev.004.09.001.

    Article  Google Scholar 

  • Cawood, P. E., Kröner, A., Collins, W. J., Kusky, T.M., Mooney, W. D. & Windley, B. F. (2009). Accretionary orogens through Earth history. In P.A. Cawood & A. Kröner (Eds), Earth Accretionary Systems in Space and Time (pp. 1–36). London: Geological Society London, Special Publication No. 318. https://doi.org/10.1144/sp318.1.

  • Cisterna, C. E. & Coira, B. (2017). Registros volcánicos del magmatismo ordovícico en las provincias de Catamarca y La Rioja, noroeste de Argentina. Herramientas para la reconstrucción del arco Famatiniano. In: Muruaga, C. M., y Grosse, P. (Eds.), Ciencias de la Tierra y Recursos Naturales del NOA. Relatorio del XX Congreso Geológico Argentino, San Miguel de Tucumán (pp. 414–433). ISBN 978-987-42-6666-8.

  • Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.-X. (2013). The ICS International Chronostratigraphic Chart. Episodes, 36, 199–204.

    Article  Google Scholar 

  • Coira, B., Davidson, J., Mpodozis, C., & Ramos, V. (1982). Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. Earth-Science Reviews, 18(3–4), 303–332. ISSN 0012-8252. https://doi.org/10.1016/0012-8252(82)90042-3.

  • Collins, W. J. (2002). Hot orogens, tectonic switching, and creation of continental crust. Geology, 30, 535–538.

    Article  Google Scholar 

  • Collo, G., Astini, R. A., Cawood, P. A., Buchan, C., & Pimentel, M. (2009). U–Pb detrital zircon ages and Sm–Nd isotopic features in low-grade metasedimentary rocks of the Famatina belt: Implications for late Neoproterozoic–early Palaeozoic evolution of the proto-Andean margin of Gondwana. Journal of the Geological Society of London, 166, 303–319. https://doi.org/10.1144/0016-76492008-051.

    Article  Google Scholar 

  • Conti, C. M., Rapalini, A. E., Coira, B., & Koukharsky, M. (1996). Paleomagnetic evidence of an early Paleozoic rotated terrane in northwest Argentina: A clue for Gondwana–Laurentia interaction? Geology, 24, 953–956. https://doi.org/10.1130/0091-7613(1996)024%3c0953:PEOAEP%3e2.3.CO;2.

    Article  Google Scholar 

  • Cristofolini, E. A., Otamendi, J. E. Ducea, M. N., Pearson, D. M., Tibaldi, A. M., & Baliani, I. (2012). Detrital zircon U–Pb ages of metasedimentary rocks from Sierra de Valle Fértil: Entrapment of Middle and Late Cambrian marine successions in the deep roots of the Early Ordovician Famatinian arc. Journal of South American Earth Sciences, 37, 77–94. ISSN 0895-9811. https://doi.org/10.1016/j.jsames.2012.02.001.

  • Cumming, G. L., & Richards, J. R. (1975). Ore lead isotope ratios in a continuously changing Earth. Earth and Planetary Science Letters, 28, 155–171.

    Article  Google Scholar 

  • Ducea, M. N., Bergantz, G. W., Crowley, J. L., & Otamendi, J. (2017). Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology. https://doi.org/10.1130/G38726.1.

    Article  Google Scholar 

  • Durney, D. W., & Kisch, H. J. (1994). A field classification and intensity scale for first-gneration cleavages. AGSO Journal of Australian Geology and Geophysics, 15, 257–295.

    Google Scholar 

  • Faure, G. & Mensing, T. M. (2004). Isotopes: Principles and Applications, (3rd Edition) Berlin: Springer. ISBN: 978-0-471-38437-3. 928.

  • Frost, B. R., & Frost, C. D. (2008). A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49, 1955–1969. https://doi.org/10.1093/petrology/egn054.

    Article  Google Scholar 

  • Hauser, N., Matteini, M., Omarini, R., & y Pimentel, M. M. (2011). Combined U–Pb and Lu–Hf isotope data on turbidites of the Paleozoic basement of NW Argentina and petrology of associated igneous rocks: Implications for the tectonic evolution of western Gondwana between 560 and 460 Ma. Gondwana Research, 19, 100–127. ISSN 1342-937X. https://doi.org/10.1016/j.gr.2010.04.002.

  • Hongn, F. D., & Riller, U. (2007). Tectonic evolution of the western margin of Gondwana inferred from syntectonic emplacement of Paleozoic granitoid plutons in northwest Argentina. The Journal of Geology, 115, 163–180. https://doi.org/10.1086/510644.

    Article  Google Scholar 

  • Hongn, F. D., Tubía, J. M., Aranguren, A.,Vegas, N., Mon, R. & Dunning, G. R. (2010). Magmatism coeval with lower Paleozoic shelf basins in NW-Argentina (Tastil batholith): Constraints on current stratigraphic and tectonic interpretations. Journal of South American Earth Sciences, 29, 289–305. ISSN 0895-9811. https://doi.org/10.1016/j.jsames.2009.07.008.

  • Ickert, R. B., Hiess, J., Williams, I. S., Holden, P., Ireland, T. R., Lanc, P., et al. (2008). Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chemical Geology, 257(1–2), 114–128. https://doi.org/10.1016/j.chemgeo.2008.08.024.

    Article  Google Scholar 

  • Kirschbaum, A., Hongn, F., & Menegatti, N. (2006). The Cobres plutonic complex, eastern Puna (NW Argentina): Petrological and structural constraints for lower Paleozoic magmatism. Journal of South American Earth Sciences, 21, 252–266.

    Article  Google Scholar 

  • Larrovere, M. A., de los Hoyos, C. R., Willner, A. P., Verdecchia, S. O., Baldo, E. G., Casquet, C., et al. (2019). Mid-crustal deformation in a continental margin orogen: structural evolution and timing of the Famatinian Orogeny, NW Argentina. Journal of the Geological Society, 177, 233–257. https://doi.org/10.1144/jgs2018-230.

    Article  Google Scholar 

  • Lister, G. & Forster, M. (2009). Tectonic mode switches and the nature of orogenesis. Lithos, 113(1–2), 274–291. ISSN 0024-4937. https://doi.org/10.1016/j.lithos.2008.10.024.

  • Lucassen, F., Becchio, R., Wilke, H. G., Franz, G., Thirlwall, M. F., Viramonte, J., et al. (2000). Proterozoic-Paleozoic development of the basement of the Central Andes (18–26°S)—A mobile belt of the South American craton. Journal of South American Earth Sciences, 13, 697–715. https://doi.org/10.1016/S0895-9811(00)00057-2.

    Article  Google Scholar 

  • Ludwig, K. R. (2003). Isoplot/Ex Version 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center. Special Publication No. 4, 2455 Ridge Road, Berkeley CA 94709, USA.

  • Lugmair, G. W., & Carlson, R. E. (1978). The Sm–Nd history of KREEP. In: Proc. 9th Lunar Planetary Science Conference (pp. 689–704).

  • Lugmair, G. W., & Marti, K. (1978). Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39, 349–357. https://doi.org/10.1016/0012-821X(78)90021-3.

    Article  Google Scholar 

  • Méndez, V., Navarini, A., Plaza, D., & Viera, O. (1973). Faja Eruptiva de la Puna Oriental. V Congreso Geológico Argentino, Córdoba, Actas, 4, 89–100.

    Google Scholar 

  • Miller, C. F., Meschter, S. Mc D, & Russell, W. M. (2003). Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31, 529–532. https://doi.org/10.1130/00917613(2003)031%3c0529:HACGIO%3e2.0.CO;2.

    Article  Google Scholar 

  • Moya, M. C. (2015). La “Fase Oclóyica” (Ordovícico Superior) en el noroeste argentino. Interpretación histórica y evidencias en contrario. Serie Correlación Geológica, 31, 73–110. Contribuciones a la Geología Argentina Tucumán, ISSN 1514-4186-ISSN on-line 1666-9479.

  • Murra, J. A., Casquet, C., Locati, F., Galindo, C., Baldo, E. G., Pankhurst, R. J., et al. (2016). Isotope (Sr, C) and U-Pb SHRIMP zircon geochronology of marble-bearing sedimentary series in the Eastern Sierras Pampeanas, Argentina. Constraining the SW Gondwana margin in Ediacaran to early Cambrian times. Precambrian Research, 281, 602–617. https://doi.org/10.1016/j.precamres.2016.06.012.

    Article  Google Scholar 

  • Naidoo, T., Zimmermann, U. & Vervoort, J. (2016). Pre-Pampean metasedimentary rocks from the Argentinian Puna: Evidence for the Ediacaran margin of Gondwana or the Arequipa–Antofalla–Western Pampeanas block. Precambrian Research, 280, 139–146. ISSN 0301-9268. https://doi.org/10.1016/j.precamres.2016.05.009.

  • Niemeyer, H., Götze, J., Sanhueza, M. & Portilla, C. (2018). The Ordovician magmatic arc in the northern Chile-Argentina Andes between 21° and 26° south latitude. Journal of South American Earth Sciences, 81, 204–214. ISSN 0895-9811. https://doi.org/10.1016/j.jsames.2017.11.016.

  • Ortiz, A., Hauser, N., Becchio, R., Suzaño, N., Nieves, A., Sola, A., Pimentel, M. & Reimold, W. (2017). Zircon U–Pb ages and Hf isotopes for the Diablillos Intrusive Complex, Southern Puna, Argentina: Crustal evolution of the Lower Paleozoic Orogen, Southwestern Gondwana margin. Journal of South American Earth Sciences, 80, 316–339, ISSN 0895-9811. https://doi.org/10.1016/j.jsames.2017.09.031.

  • Otamendi, J. E., Cristofolini, E. A., Morosini, A., Armas, P., & Tibaldi, A. M. (2020). The geodynamic history of the Famatinian arc, Argentina: A record of exposed geology over the type section (latitudes 27°–33°). Journal of South American Earth Sciences. https://doi.org/10.1016/j.jsames.2020.102558.

    Article  Google Scholar 

  • Otamendi, J. E., Ducea, M., & Bergantz, G. W. (2012). Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fértil, Famatinian Arc, Argentina. Journal of Petrology, 53(2012), 761–800. https://doi.org/10.1093/petrology/egr079.

    Article  Google Scholar 

  • Otamendi, J. E., Ducea, M. N., Cristofolini, E. A., Tibaldi, A. M., Camilletti, G. C., & Bergantz, G. W. (2017). U–Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina, Journal of South American Earth Sciences, 76, 412–426. ISSN 0895-9811. https://doi.org/10.1016/j.jsames.2017.04.005.

  • Otamendi, J. E., Tibaldi, A. M., Vujovich, G. I. & Viñao, G. A. (2008). Metamorphic evolution of migmatites from the deep Famatinian arc crust exposed in Sierras Valle Fértil–La Huerta, San Juan, Argentina. Journal of South American Earth Sciences, 25, 313–335. ISSN 0895-9811. https://doi.org/10.1016/j.jsames.2007.09.001.

  • Palma, M. A., Parica, P., & Ramos, V. A. (1986). El granito Archibarca: su edad y significado tectónico, provincia de Catamarca. Revista de la Asociación Geológica Argentina, 41, 414–419.

    Google Scholar 

  • Pankhurst, R. J., Hervé, F., Fanning, C. M., Calderón, M., Niemeyer, H., Griem-Klee, S. & Soto, F. (2016). The pre-Mesozoic rocks of northern Chile: U–Pb ages, and Hf and O isotopes. Earth-Science Reviews, 152, 88–105. ISSN 0012-8252. https://doi.org/10.1016/j.earscirev.2015.11.009.

  • Pankhurst, R. J., Rapela, C. W., & Fanning, C. M. (2000). Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91, 151–168. https://doi.org/10.1017/S0263593300007343.

    Article  Google Scholar 

  • Ramacciotti, C. D., Baldo, E. G., & Casquet, C. (2015). U–Pb SHRIMP detrital zircon ages from the Neoproterozoic Difunta Correa Metasedimentary Sequence (Western Sierras Pampeanas, Argentina): Provenance and paleogeographic implications. Precambrian Research, 270, 39–49. https://doi.org/10.1016/j.precamres.2015.09.008.

    Article  Google Scholar 

  • Ramacciotti, C. D., Casquet, C., Baldo, E. G., Galindo, C., Pankhurst, R. J., Verdecchia, S. O., et al. (2018). A Cambrian mixed carbonate siliciclastic Platform in SW Gondwana: Evidence from the Western Sierras Pampeanas (Argentina) and implications for the early Paleozoic paleogeography of the proto-Andean margin. International Journal of Earth Sciences, 107, 2605–2625. https://doi.org/10.1007/s00531-018-1617-7.

    Article  Google Scholar 

  • Rapela, C. W., Coira, B., Toselli, A., & Saavedra, J. (1992). The lower Paleozoic magmatism of southwestern Gondwana and the evolution of famatinian orogen. International Geology Review, 34, 1–142. https://doi.org/10.1080/00206819209465657.

    Article  Google Scholar 

  • Rapela, C. W., Pankhurst, R. J., Casquet, C., Dahlquist, J. A., Fanning, M. C., Baldo, E. G., et al. (2018). A review of the Famatinian Ordovician magmatism in southern South America: Evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana. Earth-Science Reviews, 187, 259–285. https://doi.org/10.1016/j.earscirev.2018.10.006.

    Article  Google Scholar 

  • Rapela, C. W., Pankhurst, R. J., Casquet, C., Fanning, C. M., Baldo, E. G., González-Casado, J. M., et al. (2007). The Río de la Plata craton and the assembly of SW Gondwana. Earth-Science Reviews, 83, 49–82. https://doi.org/10.1016/j.earscirev.2007.03.004.

    Article  Google Scholar 

  • Rapela, C. W., Verdecchia, S. O., Casquet, C., Pankhurst, R. J., Baldo, E. G., Galindo, C., et al. (2016). Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications. Gondwana Research, 32, 193–201. https://doi.org/10.1016/j.gr.2015.02.010.

    Article  Google Scholar 

  • Rubatto, D. (2017). Zircon: the metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83, 261–295.

    Article  Google Scholar 

  • Schnurr, W. B. W., Risse, A., Trumbull, R. B., & Munier, K. (2006). Digital Geological Map of the Southern and Central Puna Plateau, NW Argentina. In O. Oncken, et al. (Eds.), The Andes. Frontiers in Earth sciences. Berlin: Springer.

    Google Scholar 

  • Seggiaro, R. E., Hongn, F. D., Castillo, A., Pereyra, F., Villegas D. & Martínez, L. (2007). Hoja Geológica 2569-IV, Antofalla. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Boletín 343, Buenos Aires.

  • Suzaño, N., Becchio, R., Sola, A., Ortiz, A., Nieves, A., Quiroga, M. & Fuentes, G. (2017a). The role of magma mixing in the evolution of the Early Paleozoic calc-alkaline granitoid suites. Eastern magmatic belt, Puna, NW Argentina. Journal of South American Earth Sciences, 76, 25–46. ISSN 0895-9811. https://doi.org/10.1016/j.jsames.2017.02.008.

  • Suzaño, N. O., Sola, A. M., Elortegui Palacios, J., Becchio, R. A., Ortiz, A., Nieves, A. A. & Quiroga, M. F. (2017b). Magmatismo plutónico del Paleozoico inferior de Salta y Jujuy. In: C.M. Muruaga, & P. Grosse (Eds.), Ciencias de la Tierra y Recursos Naturales del NOA. San Miguel de Tucumán: Relatorio del XX Congreso Geológico Argentino (pp. 323–351). ISBN 978-987-42-6666-8 323.

  • Toselli, A., Sial, A. & Rossi, J. N. (2002). Ordovician magmatism of the Sierras Pampeanas, Sistema de Famatina and Cordillera Oriental, NW of Argentina. Aspects of the Ordovician System in Argentina. INSUGEO, Serie de Correlación Geológica, 16, 313–326. Tucumán, ISSN 1514-4186–ISSN on line 1666-9479.

  • Verdecchia, S. O. (2009). Las metamorfitas de baja presión vinculadas al arcomagmático famatiniano: las unidades metamórficas de la Quebrada de La Cébila y el borde oriental del Velasco. Provincia de La Rioja, Argentina. Ph.D. Thesis, Universidad Nacional de Córdoba.

  • Verdecchia, S. O., Casquet, C., Baldo, E. G., Pankhurst, R. J., Rapela, C., Fanning, C. M., et al. (2011). Mid- to Late Cambrian docking of the Rı´o de la Plata craton to southwestern Gondwana: Age constraints from U–Pb SHRIMP detrital zircon ages from Sierras de Ambato and Velasco (Sierras Pampeanas, Argentina). Journal of the Geological Society, London, 168, 1061–1071. https://doi.org/10.1144/0016-76492010-143.1061.

    Article  Google Scholar 

  • Wegmann, M. I., Riller, U., Hongn, F. D., Glodny, J. & Oncken, O. (2008). Age and kinematics of ductile deformation in the Cerro Durazno area, NW Argentina: Significance for orogenic processes operating at the western margin of Gondwana during Ordovician—Silurian times. Journal of South American Earth Sciences, 26, 78–90,. ISSN 0895-9811. https://doi.org/10.1016/j.jsames.2007.12.004.

  • Weinberg, R. F., Becchio, R., Farias, P., Suzaño, N., & Sola, A. (2018). Early Paleozoic accretionary orogenies in NW Argentina: Growth of West Gondwana. Earth-Science Reviews, 187, 219–247. https://doi.org/10.1016/j.earscirev.2018.10.001.

    Article  Google Scholar 

  • Williams, I. S., & Claesson, S. (1987). Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Contributions to Mineralogy and Petrology, 97, 205–217. https://doi.org/10.1007/BF00371240.

    Article  Google Scholar 

  • Yakymchuck, C., Kirkland, C. L., & Clark, C. (2018). Th/U ratios in metamorphic zircons. Journal of Metamorphic Geology, 36, 715–737. https://doi.org/10.1111/jmg.12307.

    Article  Google Scholar 

  • Zimmerman, U., Niemeyer, H., & Meffre, S. (2010). Revealing the continental margin of Gondwana: The Ordovician arc of the Cordon de Lila (northern Chile). International Journal of Earth Sciences (Geol Rundsch), 99, 39–56. https://doi.org/10.1007/s00531-009-0483-8.

    Article  Google Scholar 

  • Zimmermann, U., Bahlburg, H., & Mezger, K. (2014). Origin and age of ultramafic rocks and gabbros in the southern Puna of Argentina: an alleged Ordovician suture revisited. International Journal of Earth Sciences (Geol Rundsch), 103, 1023–1036. https://doi.org/10.1007/s00531-014-1020-y.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a contribution to research Grant CGL2016-76439-P from the Spanish Mineco (Ministery of Economy) and PICT-0619 FONCyT (Argentina). The paper is a tribute of the PAMPRE research group to Dra. Carmen Galindo who passed away on September the 30th, 2019. She was a beloved member of the group since the very beginning in 1994. This is the IBERSIMS publication Nº 75.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Casquet.

Ethics declarations

Conflicts of interest

The authors declare that there are not conflicts of interest or competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casquet, C., Alasino, P., Galindo, C. et al. The Faja Eruptiva of the Eastern Puna and the Sierra de Calalaste, NW Argentina: U–Pb zircon chronology of the early Famatinan orogeny. J Iber Geol 47, 15–37 (2021). https://doi.org/10.1007/s41513-020-00150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-020-00150-z

Keywords

Palabras clave

Navigation