Log in

Approximation of classes of Poisson integrals by incomplete Fejér means

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

The work is devoted to the investigation of problem of approximation of continuous periodic functions by trigonometric polynomials, which are generated by linear methods of summation of Fourier series. One of the important direction in this field is the study of asymptotic behavior of the upper bounds over a fixed classes of periodic functions of deviations of the trigonometric polynomials. In paper asymptotic behavior of the upper bounds over classes of Poisson integrals of periodic functions of the real variable of deviations of linear means of Fourier series, which are defined by applying the Fejér summation method, is studied. The mentioned classes consist of analytic functions of a real variable, which can be regularly extended into the corresponding strip of the complex plane. We solve the problem of finding the asymptotic inequalities for the upper bound of deviations of the incomplete Fejér means in the class of Poisson integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alzer, H., and M.K. Kwong. 2020. Inequalities for trigonometric sums and applications. Aequationes Math. 94: 235–251. https://doi.org/10.1007/s00010-019-00657-6.

    Article  MathSciNet  Google Scholar 

  2. Bauschke, H.H., M. Krishan Lal, and X. Wang. 2023. Directional asymptotics of Fejér monotone sequences. Optim. Lett. 17: 531–544. https://doi.org/10.1007/s11590-022-01896-4.

    Article  MathSciNet  Google Scholar 

  3. Berens, H., and Y. Xu. 1996. Fejér means for multivariate Fourier series. Math. Z. 221: 449–465. https://doi.org/10.1007/BF02622126.

    Article  MathSciNet  Google Scholar 

  4. Berriochoa, E., and A. Cachafeiro. 2015. On the asymptotic constant for the rate of Hermite-Fejér convergence on Chebyshev nodes. Acta Math. Hungar. 147: 32–45. https://doi.org/10.1007/s10474-015-0505-x.

    Article  MathSciNet  Google Scholar 

  5. Brandolini, L., and G. Travaglini. 1997. Pointwise convergence of Fejer type means. Tohoku Math. J. Second Ser. 49 (3): 323–336.

    MathSciNet  Google Scholar 

  6. Fejér, L. 1903. Untersuchungen über Fouriersche Reihen. Math. Ann. 58: 51–69. https://doi.org/10.1007/BF01447779.

    Article  MathSciNet  Google Scholar 

  7. Knoop, H., and F. Locher. 1990. Hermite-Fejér type interpolation and Korovkin’s theorem. Bull. Aust. Math. Soc. 42 (3): 383–390. https://doi.org/10.1017/S0004972700028549.

    Article  Google Scholar 

  8. Locher, F. 1985. On Hermite-Fejér interpolation at Jacobi zeros. J. Approx. Theor.https://doi.org/10.1016/0021-9045(85)90077-2.

    Article  Google Scholar 

  9. Lopez-Bonilla, J., S. Vidal Beltran, and J. Yalja Montiel. 2007. A on Dirichlet and Fejer kernels. Rev. Mat. 14 (1): 101–104. https://doi.org/10.15517/rmta.v14i1.283.

    Article  MathSciNet  Google Scholar 

  10. Nikolskiy, S.M. 1946. Approximation of the functions by trigonometric polynomials in the mean. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya. 10 (3): 207–256.

  11. Rovenska, O. 2021. The lower estimate of deviations of Fejer sums on classes of Poisson integrals. Lobachevskii J. Math. 42: 2936–2941. https://doi.org/10.1134/S1995080221120283.

    Article  MathSciNet  Google Scholar 

  12. Rovenska, O. 2023. Approximation of differentiable functions by rectangular repeated de la Vallée Poussin means. J. Anal. 31: 691–703. https://doi.org/10.1007/s41478-022-00479-x.

    Article  MathSciNet  Google Scholar 

  13. Rukasov, V.I. 2003. Approximation of classes of analytic functions by de la Vallée-Poussin sums. Ukr. Math. J. 55: 974–986. https://doi.org/10.1023/B:UKMA.0000010597.47180.f9.

    Article  Google Scholar 

  14. Shi, Y.G. 1999. On the rough theory of Hermite-Fejér type interpolation of higher order. Acta Math. Hungar. 84: 81–96. https://doi.org/10.1023/A:1006650803158.

    Article  MathSciNet  Google Scholar 

  15. Weisz, F. 2011. Triangular Cesáro summability of two dimensional Fourier series. Acta Math. Hungar. 132: 27–41. https://doi.org/10.1007/s10474-011-0095-1.

    Article  MathSciNet  Google Scholar 

  16. Weisz, F. 2022. Cesáro summability and Lebesgue points of higher dimensional Fourier series. Math. Found. Comput. 5 (3): 241–257. https://doi.org/10.3934/mfc.2021033.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Volkswagen Foundation project “From Modeling and Analysis to Approximation".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Rovenska.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by S Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rovenska, O. Approximation of classes of Poisson integrals by incomplete Fejér means. J Anal 32, 1433–1442 (2024). https://doi.org/10.1007/s41478-023-00692-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-023-00692-2

Keywords

Mathematics Subject Classification

Navigation