Log in

Almost all weak solutions of the weighted p(.)-biharmonic problem

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

We give a new compact embedding theorem, and use an equivalent norm to obtain some different solutions of the weighted \(p\left( .\right) \)-biharmonic eigenvalue problem

$$\begin{aligned} \left\{ \begin{array}{cc} \Delta \left( \nu (x)\left| \Delta u\right| ^{p(x)-2}\Delta u\right) =\lambda \omega (x)\left| u\right| ^{q(x)-2}u, &{} \text {in }\Omega \\ u=\Delta u=0, &{} \text {on }\partial \Omega . \end{array} \right. \end{aligned}$$

Using Mountain Pass Theorem we show that the problem has a nontrivial weak solution. Moreover, we obtain infinite many pairs of solutions of the problem due to the Fountain Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

We do not analyse or generate any datasets, because our work proceeds within a theoretical and mathematical approach.

References

  1. Diening, L., P. Harjulehto, and P. Hastö. 2011. Ruzicka M. Lebesgue and Sobolev spaces with variable exponents. Lecture Notes, vol. 201. Berlin: Springer-Verlag.

    Google Scholar 

  2. Halsey, T.C. 1992. Electrorheological fluids. Science 258 (5083): 761–766.

    ADS  CAS  PubMed  Google Scholar 

  3. Mihăilescu, M., and V. Rădulescu. 2006. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Lond. Ser. A 462: 2625–2641.

    ADS  MathSciNet  Google Scholar 

  4. Růžička, M. 2000. Electrorheological fuids: modeling and mathematical theory lecture notes in mathematics, vol. 1748. Berlin: Springer.

    Google Scholar 

  5. Zhikov, V.V. 1987. Averaging of functionals of tha calculus of variations and elasticity theory. Math. USSR Izv. 9: 33–66.

    ADS  Google Scholar 

  6. Aydın, I., and C. Unal. 2020. Weighted stochastic field exponent Sobolev spaces and nonlinear degenerated elliptic problem with nonstandard growth. Hacettepe J. Math. Stat. 49 (4): 1383–1396.

    MathSciNet  Google Scholar 

  7. Aydın, I., and C. Unal. 2021. Three solutions to a Steklov problem involving the weighted \(p(.)\)-Laplacian. Rocky Mountain J. Math. 51 (1): 67–76.

    MathSciNet  Google Scholar 

  8. Aydın, I., and C. Unal. 2021. Existence and multiplicity of weak solutions for eigenvalue Robin problem with weighted p(.)-Laplacian. Ricerche di Matematica. https://doi.org/10.1007/s11587-021-00621-0.

    Article  Google Scholar 

  9. Cavalheiro, A.C. 2008. Existence of entropy solutions for degenerate quasilinear elliptic equations. Complex Var. Elliptic Equ. 53 (10): 945–956.

    MathSciNet  Google Scholar 

  10. Cavalheiro, A.C. 2014. Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations. Arc. Math. (Brno) Tomus 50: 51–63.

    MathSciNet  Google Scholar 

  11. Cavalheiro, A.C. 2015. Existence and uniqueness of solutions for problems with weighted \(p\)-Laplacian and \(p\)-biharmonic operators. Elec. J. Math. Anal. App. 3 (2): 215–226.

    MathSciNet  Google Scholar 

  12. Fan, X.L., H.Q. Wu, and F.Z. Wang. 2003. Hartman-type results for p(t)-Laplacian systems. Nonlinear Anal. 52: 585–594.

    MathSciNet  Google Scholar 

  13. Fan, X. 2005. Solutions for \(p(x)\)-Laplacian Dirichlet problems with singular coefficients. J. Math. Anal. Appl. 312: 464–477.

    MathSciNet  Google Scholar 

  14. Ho, K., and I. Sim. 2008. A-priori bounds and existence for solutions of weighted elliptic equations with a convection term. Adv. Nonlinear Anal. 6 (4): 427–445.

    MathSciNet  Google Scholar 

  15. Liu, W., and P. Zhao. 2008. Existence of positive solutions for \(p(x)\) -Laplacian equations in unbounded domains. Nonlinear Anal. 69 (10): 3358–3371.

    MathSciNet  Google Scholar 

  16. Mihăilescu, M. 2007. Existence and multiplicity of solutions for a Neumann problem involving the \(p(x)\)-Laplace operator. Nonlinear Anal. 67: 1419–1425.

    MathSciNet  Google Scholar 

  17. Unal, C., and I. Aydın. 2021. Compact embeddings of weighted variable exponent Sobolev spaces and existence of solutions for weighted \(p(.)\) -Laplacian. Complex Var. Elliptic Equ. 66 (10): 1755–1773.

    MathSciNet  Google Scholar 

  18. Zhang, C. 2014. Entropy solutions for nonlinear elliptic equations with variable exponents. Electron. J. Differ. Equ. 2014 (92): 1–14.

    ADS  MathSciNet  Google Scholar 

  19. Ayoujil, A., and A.R. El Amrouss. 2009. On the spectrum of a fourth order elliptic equation with variable exponent. Nonlinear Anal. 71: 4916–4926.

    MathSciNet  Google Scholar 

  20. Ge, B., Q.M. Zhou, and Y.H. Wu. 2015. Eigenvalues of the \(p\left( x\right) \) -biharmonic operator with indefinite weight. Z. Angew. Math. Phys. 66: 1007–1021.

    MathSciNet  Google Scholar 

  21. Kefi, K., and V.D. Rădulescu. 2017. On a \(p\left( x\right) \)-biharmonic problem with singular weights. Z. Angew. Math. Phys. 68 (4): 80.

    Google Scholar 

  22. Kefi, K., and K. Saoudi. 2019. On the existence of a weak solution for some singular \(p\left( x\right) \)-biharmonic equation with Navier boundary conditions. Adv. Nonlinear Anal. 8: 1171–1183.

    MathSciNet  Google Scholar 

  23. Kefi, K. 2019. For a class of \(p\left( x\right) \)-biharmonic operators with weights. RACSAM 113: 1557–1570.

    MathSciNet  Google Scholar 

  24. Kong, L. 2014. On a fourth order elliptic problem with a \(p\left( x\right) \)-biharmonic operator. Appl. Math. Lett. 27: 21–25.

    MathSciNet  Google Scholar 

  25. Kong, L. 2015. Eigenvalues for a fourth order elliptic problem. Proc. Amer. Math. Soc. 143: 249–258.

    MathSciNet  Google Scholar 

  26. Li, L., and C. Tang. 2013. Existence and multiplicity of solutions for a class of \(p\left( x\right) \)-biharmonic equations. Acta Math Scientia 33B (1): 155–170.

    Google Scholar 

  27. Drábek, P., and M. Ôtani. 2001. Global bifurcation result for the \(p\) -biharmonic operator. Electron. J. Differ. Equ. 2001 (48): 1–19.

    MathSciNet  Google Scholar 

  28. Talbi, M., and N. Tsouli. 2007. On the spectrum of the weighted \(p\) -biharmonic operator with weight. Mediterr. J. Math. 4: 73–86.

    MathSciNet  Google Scholar 

  29. Zang, A., and Y. Fu. 2008. Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Anal. 69: 3629–3636.

    MathSciNet  Google Scholar 

  30. Aydın, I. 2012. Weighted variable Sobolev spaces and capacity. J. Funct. Spaces Appl. 2012.

  31. Aydın, I., and C. Unal. 2020. The Kolmogorov-Riesz theorem and some compactness criterions of bounded subsets in weighted variable exponent amalgam and Sobolev spaces. Collect. Math. 71: 349–367.

    MathSciNet  Google Scholar 

  32. Fan, X., and D. Zhao. 2001. On the spaces \(L^{p(x)}(\Omega )\) and \( W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl. 263: 424–446.

    MathSciNet  Google Scholar 

  33. Kováčik, O., and J. Rákosník. 1991. On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslovak Math. J. 41 (116,4): 592–618.

    MathSciNet  Google Scholar 

  34. Unal, C., and I. Aydın. 2019. Compact embeddings on a subspace of weighted variable exponent Sobolev spaces. Adv. Oper. Theory 4 (2): 388–405.

    MathSciNet  Google Scholar 

  35. Unal, C., and I. Aydın. 2020. On some properties of relative capacity and thinness in weighted variable exponent Sobolev spaces. Anal. Math. 46 (1): 147–167.

    MathSciNet  Google Scholar 

  36. Izuki, M., T. Nogayama, T. Noi, and Y. Sawano. 2020. Wavelet characterization of local Muckenhoput weighted Lebesgue spaces with variable exponent. Nonlinear Anal. 198: 111930.

    MathSciNet  Google Scholar 

  37. Liu, Q. 2008. Compact trace in weighted variable exponent Sobolev spaces \(W^{1, p(x)}(\Omega; \nu _{0},\nu _{1})\). J. Math. Anal. Appl. 348: 760–774.

    MathSciNet  Google Scholar 

  38. Edmunds, E., A. Fiorenza, and A. Meskhi. 2006. On a measure of non-compactness for some classical operators. Acta Math. Sin. 22 (6): 1847–1862.

    MathSciNet  Google Scholar 

  39. Hsini, M., N. Irzi, and K. Kefi. 2021. Existence of solutions for a \(p(x)\) -biharmonic problem under Neumann boundary conditions. Appl. Anal. 100 (10): 2188–2199.

    MathSciNet  Google Scholar 

  40. Ho, K., and I. Sim. 2016. On degenerate \(p\left( x\right) \)-Laplace equations involving critical growth with two parameters. Nonlinear Anal. 132: 95–114.

    MathSciNet  Google Scholar 

  41. Saiedinezhad, S., and B. Ghaemi. 2015. The fibering map approach to a quasilinear degenerate \(p(.)\)-Laplacian equation. Bull. Iran Math. Soc. 41 (6): 1477–1492.

    MathSciNet  Google Scholar 

  42. Gurka, P., and B. Opic. 1998. Continuous and compact imbeddings of weighted Sobolev spaces I. Czech. Math. J. 38 (113): 730–744.

    MathSciNet  Google Scholar 

  43. Fan, X.L., and Q.H. Zhang. 2003. Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal. 52: 1843–1852.

    MathSciNet  Google Scholar 

  44. Zhikov, V.V. 2016. Surnachev MD. On density of smooth functions in weighted Sobolev spaces with variable exponents. St. Petersburg Math. J. 27: 415–436.

    MathSciNet  Google Scholar 

  45. Willem, M. 1996. Minimax theorems. Boston: Birkhauser.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Aydın.

Ethics declarations

Conflict of interest

Author has not any conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydın, I. Almost all weak solutions of the weighted p(.)-biharmonic problem. J Anal 32, 171–190 (2024). https://doi.org/10.1007/s41478-023-00628-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-023-00628-w

Keywords

Mathematics Subject Classification

Navigation