Log in

The SLEGS beamline of SSRF

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The Shanghai Laser Electron Gamma Source (SLEGS, located in BL03SSID) beamline at the Shanghai Synchrotron Radiation Facility (SSRF) is a Laser Compton Scattering (LCS) gamma source used for the investigation of nuclear structure, which is in extensive demand in fields such as nuclear astrophysics, nuclear cluster structure, polarization physics, and nuclear energy. The beamline is based on the inverse Compton scattering of 10640 nm photons on 3.5 GeV electrons and a gamma source with variable energy by changing the scattering angle from 20\(^\circ\) to 160\(^\circ\). \(\gamma\) rays of 0.25\(-\)21.1 MeV can be extracted by the scheme consisting of the interaction chamber, coarse collimator, fine collimator, and attenuator. The maximum photon flux for 180\(^\circ\) is approximately \(10^{7}\) photons/s at the target at 21.7 MeV, with a 3-mm-diameter beam. The beamline was equipped with four types of spectrometers for experiments in (\(\gamma\),\(\gamma\)’), (\(\gamma\),n), (\(\gamma\),p), and (\(\gamma,\!\alpha\)). At present, Nuclear Resonance Fluorescence (NRF) spectrometry, Flat-Efficiency neutron Detector (FED) spectrometry, neutron Time-Of-Flight (TOF) spectrometry, and Light-Charged Particle (LCP) spectrometry methods have been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availibility

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.07246 and https://www.doi.org/10.57760/sciencedb.07246.

References

  1. A. Zilges, D.L. Balabanski, J. Isaak et al., Photonuclear reactions-from basic research to applications. Prog. Part. Nucl. Phys. 122, 103903 (2022). https://doi.org/10.1016/j.ppnp.2021.103903

    Article  Google Scholar 

  2. S. Lindenstruth, A. Degener, R.D. Heil et al., Measurements and simulations of low energy, thick target bremsstrahlung spectra. Nucl. Instrum. Meth. Phys. Res. Sect. A 300, 293–296 (1991). https://doi.org/10.1016/0168-9002(91)90439-W

    Article  ADS  Google Scholar 

  3. R. Schwengner, R. Beyer, F. Dönau et al., The photon-scattering facility at the superconducting electron accelerator ELBE. Nucl. Instrum. Meth. Phys. Res. Sect. A 555, 211–219 (2005). https://doi.org/10.1016/j.nima.2005.09.024

    Article  ADS  Google Scholar 

  4. K. Kosako, K. Oishi, T. Nakamura et al., Angular distribution of bremsstrahlung from copper and tungsten targets bombarded by 18, 28, and 38 MeV electrons. J. Nucl. Sci. Technol. 47, 286–294 (2010). https://doi.org/10.1080/18811248.2010.9711956

    Article  Google Scholar 

  5. P. Mohr, J. Enders, T. Hartmann et al., Real photon scattering up to 10 MeV: the improved facility at the Darmstadt electron accelerator S-DALINAC. Nucl. Instrum. Meth. Phys. Res. Sect. A 423, 480–488 (1999). https://doi.org/10.1016/S0168-9002(98)01348-5

    Article  ADS  Google Scholar 

  6. Flerov Laboratory of Nuclear Reactions, 2024, http://flerovlab.**r.ru/mt-25-microtron/ Accessed: 2024-01-28

  7. Accelerating new discoveries in nuclear physics, 2024, https://www.llnl.gov/article/45861/accelerating-new-discoveries-nuclear-physics Accessed: 2024-01-28

  8. W. Bertozzi, J.A. Caggiano, W.K. Hensley et al., Nuclear resonance fluorescence excitations near 2 MeV in \(^{235}{\rm U and}\, ^{239}{\rm Pu}\). Phys. Rev. C 78, 041601 (2008). https://doi.org/10.1103/PhysRevC.78.041601

    Article  ADS  Google Scholar 

  9. National Science Center Kharkov Institute of Physics and Technology, 2024, https://www.kipt.kharkov.ua/en/ Accessed: 2024-01-28

  10. The Idaho Accelerator Center, 2024, https://www.isu.edu/physics/facilities--research/idaho-accelerator-center-iac/ Accessed: 2024-01-28

  11. D. Savran, K. Lindenberg, J. Glorius et al., The low-energy photon tagger NEPTUN. Nucl. Instrum. Meth. Phys. Res. Sect. A 62, 257–303 (2009). https://doi.org/10.1016/j.ppnp.2008.07.001

    Article  Google Scholar 

  12. H.R. Weller, M.W. Ahmed, H. Gao et al., Research opportunities at the upgraded HI\(\gamma\)S facility. Prog. Part. Nucl. Phys. 613, 232–239 (2010). https://doi.org/10.1016/j.nima.2009.11.038

    Article  Google Scholar 

  13. H.R. Weller, M.W. Ahmed, Y.K. Wu, Nuclear physics research at the high intensity gamma-ray source (HI\(\gamma\)S). Nucl. Phys. News 25, 19–24 (2015)

    Article  ADS  Google Scholar 

  14. H. Zen, H. Ohgaki, Y. Taira et al., Demonstration of tomographic imaging of isotope distribution by nuclear resonance fluorescence. AIP Adv. 9, 035101 (2019). https://doi.org/10.1063/1.5064866

    Article  ADS  Google Scholar 

  15. D. Angal-Kalinin, G. Arduini, B. Auchmann et al., PERLE Powerful energy recovery linac for experiments Conceptual design report. J. Phys. G Nucl. Part. Phys. 45, 065003 (2018)

    Article  ADS  Google Scholar 

  16. M.W. Krasny, The Gamma factory proposal for CERN, 2015

  17. C. Curatolo, W. Placzek, M.W. Krasny et al., Novel high intensity gamma-source at CERN: the Gamma Factory Initiative. PoS LHCP2018, (2018). https://doi.org/10.22323/1.321.0089

  18. M.W. Krasny, A. Petrenko, W. Płaczek, High-luminosity Large Hadron Collider with laser-cooled isoscalar ion beams. Prog. Part. Nucl. Phys. 114, 103792 (2020). https://doi.org/10.1016/j.ppnp.2020.103792

    Article  Google Scholar 

  19. D. Budker, J.R. Crespo López-Urrutia, A. Derevianko et al., Atomic physics studies at the gamma factory at CERN. Ann. Phys. 532, 2000204 (2020)

    Article  Google Scholar 

  20. X.Z. Cai, J.H. Gu, W. Guo et al., Research on properties and application of Compton backscattered gamma light source based on synchrotron radiation accelerator. Prog. Phys. 23, 389 (2003)

    Google Scholar 

  21. W. Guo, W. Xu, J.G. Chen et al., A high intensity beam line of \(\gamma\)-rays up to 22 MeV energy based on Compton backscattering. Nucl. Instrum. Meth. Phys. Res. Sect. A 578, 457 (2007). https://doi.org/10.1016/j.nima.2007.05.32214

    Article  ADS  Google Scholar 

  22. J.G. Chen, W. Xu, W. Guo et al., An X-ray source based on Compton backscattering of CO2 laser and 100 MeV electrons. Nucl. Instrum. Meth. Phys. Res. Sect. A 580, 1184–1190 (2007). https://doi.org/10.1016/j.nima.2007.07.00715

    Article  ADS  Google Scholar 

  23. W. Luo, W. Xu, Q.Y. Pan et al., Laser Compton scattering experiments and the latest developments in construction of experimental facilities at SINAP. SPIE 7385, 73852D (2009). https://doi.org/10.1117/12.83557216

    Article  ADS  Google Scholar 

  24. W. Luo, W. Xu, Q.Y. Pan et al., A Laser-Compton Scattering(LCS) prototype experiment at 100 MeV Linac of Shanghai Institute of Applied Physics. Rev. Sci. Instr. 81, 013304 (2010). https://doi.org/10.1063/1.328244517

    Article  ADS  Google Scholar 

  25. W. Luo, W. Xu, Q.Y. Pan et al., An X-ray spectroscopy system and its application to the Laser-Compton scattering experiments. Nucl. Instrum. Meth. Phys. Res. Sect. A 624, 141–147 (2010). https://doi.org/10.1016/j.nima.2010.09.04518

    Article  ADS  Google Scholar 

  26. W. Luo, W. Xu, Q.Y. Pan et al., A 4D Monte Carlo laser-Compton scattering simulation code for the characterization of the future energy-tunable SLEGS. Nucl. Instrum. Meth. Phys. Res. Sect. A 660, 108–115 (2011). https://doi.org/10.1016/j.nima.2011.09.03519

    Article  ADS  Google Scholar 

  27. W. Luo, W. Xu, Q.Y. Pan et al., X-ray generation from slanting laser-Compton scattering for future energy-tunable Shanghai Laser Electron Gamma Source. Appl. Phys. B 101, 761–771 (2010). https://doi.org/10.1007/s00340-010-4100-020

    Article  ADS  Google Scholar 

  28. H. Xu, Z. Zhao, Current status and progresses of SSRF project. Nucl. Sci. Tech. 19, 1–6 (2008). https://doi.org/10.1016/S1001-8042(08)60013-5

    Article  Google Scholar 

  29. G. Baldwin, G. Klaiber, Photo-fission in heavy elements. Phys. Rev. 71, 3 (1947). https://doi.org/10.1103/PhysRev.71.3

    Article  ADS  Google Scholar 

  30. O. Wieland, A. Bracco, F. Camera et al., Giant dipole resonance in the hot and thermalized \(^{132}\)Ce nucleus: dam** of collective modes at finite temperature. Phys. Rev. Lett. 97(1), 012501 (2006)

    Article  ADS  Google Scholar 

  31. A.Shiller, M. Thoennessen, Atomic Data and Nuclear Data Tables 93 (549)

  32. H.W. Wang, G.T. Fan, L.X. Liu et al., Development and prospect of shanghai laser Compton scattering gamma source. Nucl. Phys. Rev. 37, 53–63 (2020)

    Google Scholar 

  33. N. Paar, D. Vretenar, E. Khan et al., Exotic modes of excitation in atomic nuclei far from stability. Rep. Prog. Phys. 70, R02 (2007). https://doi.org/10.1088/0034-4885/70/5/R02

    Article  Google Scholar 

  34. A. Carbone, G. Colò, A. Bracco et al., Constraints on the symmetry energy and neutron skins from pygmy resonances in \(^{68}\)Ni and \(^{132}\)Sn. Phys. Rev. C 81, 041301 (2010). https://doi.org/10.1103/PhysRevC.81.041301

    Article  ADS  Google Scholar 

  35. H. Utsunomiya, S. Goriely, H. Akimune et al., Photoneutron cross sections for \(^{96}\)Zr: A systematic experimental study of photoneutron and radiative neutron capture cross sections for zirconium isotopes. Phys. Rev. C 81, 014615 (2010). https://doi.org/10.1103/PhysRevC.81.035801

    Article  Google Scholar 

  36. V. Kaur, S. Kumar, Systematic study of multifragmentation in asymmetric colliding nuclei. Phys. Rev. C 81, 064610 (2010). https://doi.org/10.1103/PhysRevC.81.064610

    Article  ADS  Google Scholar 

  37. H.W. Wang, G.T. Fan, L.X. Liu et al., Commissioning of laser electron gamma beamline SLEGS at SSRF. Nucl. Sci. Tech. 33, 87 (2022). https://doi.org/10.1007/s41365-022-01076-0

    Article  Google Scholar 

  38. H. Xu, G. Fan, H. Wang et al., Interaction chamber for laser compton slant-scattering in SLEGS beamline at shanghai light source. Nucl. Instr. Meth. A 1033, 166742 (2022). https://doi.org/10.1016/j.nima.2022.166742

    Article  Google Scholar 

  39. Z. Hao, G. Fan, H. Wang et al., Collimator system of slegs beamline at shanghai light source. Nucl. Instrum. Meth. Phys. Res. Sect. A 1013, 165638 (2021). https://doi.org/10.1016/j.nima.2021.165638

    Article  Google Scholar 

  40. G. Duchêne, F. Beck, P. Twin et al., The CLOVER: a new generation of composite Ge detectors. Nucl. Instrum. Meth. Phys. Res. Sect. A 432, 90–110 (1999). https://doi.org/10.1016/S0168-9002(99)00277-6

    Article  ADS  Google Scholar 

  41. CAEN:https://www.caen.it [online].2023

  42. Mesytec. https://www.mesytec.com [online]. 2023

  43. P. Kuang, L.L. Song, K.J. Chen et al., Design and detector performance analysis of Shanghai Laser Electron Gamma Source (SLEGS) nuclear resonance fluorescence spectrometer. Nucl. Phys. Rev. 40, 58–65 (2023)

    Google Scholar 

  44. Z.R. Hao, G.T. Fan, L.X. Liu et al., Design and simulation of 4\(\pi\) flat-efficiency 3He neutron detector array. Nucl. Tech. (in Chinese) 43, 110501 (2020).

    Google Scholar 

  45. L.V. East, R.B. Walton, Polyethylene moderated 3He neutron detectors. Nucl. Instrum. Meth. 72, 161–166 (1969). https://doi.org/10.1016/0029-554X(69)90152-9

    Article  ADS  Google Scholar 

  46. B.L. Berman, J.T. Caldwell, R.R. Harvey et al., Photoneutron cross sections for \({^{90}\text{Zr}}\), \({^{91}\text{Zr}}\), \({^{92}\text{Zr}}\), \({^{94}\text{Zr}}\), and \({^{89}\text{Y}}\). Phys. Rev. 162, 1098–1111 (1967). https://doi.org/10.1103/PhysRev.162.1098

    Article  ADS  Google Scholar 

  47. K.J. Chen, L.X. Liu, Z.R. Hao et al., Simulation and test of the SLEGS TOF spectrometer at SSRF. Nucl. Sci. Tech. 34, 47 (2023). https://doi.org/10.1007/s41365-023-01194-3

    Article  Google Scholar 

  48. T.L. Qiu, M. Li, X.L. Wei et al., Ion pulse ionization chamber for online measurements of the radon activity concentration. Nuclear Tech. 44, 040403 (2021)

    Google Scholar 

  49. F.L. Liu, C.Y. He, H.R. Wang et al., Thick-target yield of 17.6MeV \(\gamma\) ray from the resonant reaction \(^{7}\)Li(p,\(\gamma\))\(^{8}\)Be at \(E_{p}\) =441keV. Nucl. Instr. Meth. B 529, 56–60 (2022)

    Article  ADS  Google Scholar 

  50. A. Antilla, J. Keinonen, M. Hautala et al., Use of the \(^{27}\)Al(p,\(\gamma\))\(^{28}\)Si, \(E_{p}\) = 992 keV resonance as a gamma-ray intensity standard. Nucl. Instr. Meth. 147, 501–505 (1977). https://doi.org/10.1016/0029-554X(77)90393-7

    Article  Google Scholar 

  51. Y.L. Dang, F.L. Liu, G.Y. Fu et al., New measurement of thick target yield for narrow resonance at \(E_{x}\)=9.17MeV in the \(^{13}\)C(p,\(\gamma\))\(^{14}\)N reaction. Chinese Phys. B 28, 060706 (2019). https://doi.org/10.1088/1674-1056/28/6/060706

    Article  ADS  Google Scholar 

  52. F.L. Liu, W.S. Yang, J.H. Wei et al., Study on \(\gamma\)-ray source from the resonant reaction \(^{19}\)F(p,\(\alpha \gamma\))\(^{16}\)O at \(E_{p}\)= 340 keV. Chin. Phys. B 29, 070702 (2020). https://doi.org/10.1088/1674-1056/ab96a0

    Article  Google Scholar 

  53. S. Agostinelli, J. Allison, K. Amako et al., Geant4-a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. Sect. A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  54. G. D’Agostini, A multidimensional unfolding method based on bayes’ theorem. Nucl. Instrum. Meth. Phys. Res. Sect. A 362, 487–498 (1995). https://doi.org/10.1016/0168-9002(95)00274-X

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the beamline engineers from the SSRF Optics and Control Department and the Mechanics and Vacuum Department for their hard work on beamline design, construction, and online testing. We are grateful to Zhen-Tang Zhao, Ren-Zhong Tai, Jie Wang, Yu-Ying Huang and Song Xue, who discussed the detector techniques and the beamline design. We thank Researcher Gui-Lin Zhang for his assistance with detector testing. We thank Researcher Gen-Ming ** of the Institute of Modern Physics for his guidance on the experimental methods. We thank Professor Wan-** the gamma beam spot measurement device. We appreciate the support of Bing Guo, Chuang-Ye He, Fu-Long Liu, Zhi-Qiang Wang, Yi-Na Liu, and Ming-Zhe Song from the Chinese Academy of Atomic Energy Sciences in calibrating the LaBr3 detectors. We would like to express our gratitude to Professor Hiroaki Utsunomiya for his guidance on gamma spectroscopy measurements. The authors are grateful to Wen-Qing Shen and Yu-Gang Ma for their guidance in constructing the SLEGS beamline. This study was supported by the Shanghai Light Source Line Station Project.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Long-**ang Liu, Hong-Wei Wang, Gong-Tao Fan, Hang-Hua Xu, Yue Zhang, and Zi-Rui Hao. The first draft of the manuscript was written by Long-**ang Liu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hong-Wei Wang, Gong-Tao Fan or Ai-Guo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

This work was supported by the Shanghai Light Source Line Station Project.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, LX., Wang, HW., Fan, GT. et al. The SLEGS beamline of SSRF. NUCL SCI TECH 35, 111 (2024). https://doi.org/10.1007/s41365-024-01469-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01469-3

Keywords

Navigation