Log in

Neutron irradiation influence on high-power thyristor device under fusion environment

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Because of their economy and applicability, high-power thyristor devices are widely used in the power supply systems for large fusion devices. When high-dose neutrons produced by deuterium–tritium (D–T) fusion reactions are irradiated on a thyristor device for a long time, the electrical characteristics of the device change, which may eventually cause irreversible damage. In this study, with the thyristor switch of the commutation circuit in the quench protection system (QPS) of a fusion device as the study object, the relationship between the internal physical structure and external electrical parameters of the irradiated thyristor is established. Subsequently, a series of targeted thyristor physical simulations and neutron irradiation experiments are conducted to verify the accuracy of the theoretical analysis. In addition, the effect of irradiated thyristor electrical characteristic changes on the entire QPS is studied by accurate simulation, providing valuable guidelines for the maintenance and renovation of the QPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.j00186.00409 and https://www.doi.org/10.57760/sciencedb.j00186.00409.

References

  1. K. Tomabechi, J.R. Gilleland, Y.A. Sokolov et al., ITER conceptual design. Nucl. Fusion 31, 1135 (1991). https://doi.org/10.1088/0029-5515/31/6/011

    Article  Google Scholar 

  2. J. Li, Y. Wan, The experimental advanced superconducting tokamak. Engineering 7, 1523–1528 (2021). https://doi.org/10.1016/j.eng.2021.10.004

    Article  Google Scholar 

  3. J. Ongena, R. Koch, R. Wolf, H. Zohm, Magnetic-confinement fusion. Nat. Phys. 12, 398–410 (2016). https://doi.org/10.1038/nphys3745

    Article  Google Scholar 

  4. M. Yiğit, E. Tel, Theoretical determination of (d, n) and (d, 2n) excitation functions of some structural fusion materials irradiated by deuterons. Nucl. Sci. Tech. 28, 245–253 (2017). https://doi.org/10.1007/s41365-017-0316-6

    Article  Google Scholar 

  5. W. Chen, L. Hu, G. Zhong et al., Study on the gamma rays and neutrons energy response optimization of a scintillating fiber detector for EAST with Geant4. Nucl. Sci. Tech. 34, 134 (2023). https://doi.org/10.1007/s41365-023-01290-4

    Article  Google Scholar 

  6. W. Zhou, X. Fang, J. Fang et al., DC performance and AC loss of cable-in-conduit conductors for International Thermonuclear Experimental Reactor. Nucl. Sci. Tech. 27, 74 (2016). https://doi.org/10.1007/s41365-016-0061-2

    Article  MathSciNet  Google Scholar 

  7. S. Zheng, M. Chen, J. Li et al., Neutronics analysis for the test blanket modules proposed for EAST and ITER. Nucl. Fusion 47, 1053–1056 (2008). https://doi.org/10.1088/0029-5515/47/8/040

    Article  ADS  Google Scholar 

  8. D. Martin et al., NIU report on radiation issues on electronics in B11. ITER Org., Marseille, Tech. Rep. (2016)

  9. W. Tong, M. Xu, H. Li et al., The effects of neutron irradiation on the electrical characteristics of high-power thyristor, in 2023 IEEE 6th International Electrical and Energy Conference (CIEEC) (2023), pp. 2362–2365. https://doi.org/10.1109/ICET55676.2022.9825404

  10. W. Tong, M. Xu, H. Li et al., The conceptual design of upgraded 100 kA quench protection system for CRAFT superconducting magnet. Fusion Eng. Des. 187, 113397 (2022). https://doi.org/10.1016/j.fusengdes.2022.113397

    Article  Google Scholar 

  11. W. Zhou, X. Fang, J. Fang et al., Numerical and experimental analysis of AC loss for CFETR CS model coil. Nucl. Sci. Tech. 28, 142 (2017). https://doi.org/10.1016/j.fusengdes.2022.113397

    Article  Google Scholar 

  12. M. Xu, W. Tong, H. Li et al., Research on dynamic voltage balancing of series connected thyristors in auxiliary oscillation zero-crossing circuit. IEEE Trans. Plasma Sci. 51, 164–171 (2023). https://doi.org/10.1109/TPS.2022.3231596

    Article  ADS  Google Scholar 

  13. M. Xu, H. Li, Z. Song et al., The challenge and solution of overvoltage for 100 kA quench protection system in CRAFT project. Fusion Eng. Des. 175, 113001 (2022). https://doi.org/10.1016/j.fusengdes.2022.113001

    Article  Google Scholar 

  14. W. Tong, M. Xu, H. Li et al., 100 kA/10 kV thyristor stack design for quench protection system in CRAFT. Plasma Sci. Technol. 25, 055601 (2023). https://doi.org/10.1088/2058-6272/aca8eb

    Article  ADS  Google Scholar 

  15. W. Tong, Z. Song, P. Fu et al., Feasibility analysis of 100 kA DC commutation scheme to be applied in the quench protection unit of CFETR. IEEE Trans. Appl. Supercon. 30, 1–9 (2020). https://doi.org/10.1109/TASC.2019.2926376

    Article  Google Scholar 

  16. H. Li, Z. Song, S. Wang et al., Study on DC protection switch for superconducting coils in magnetic confinement fusion device. Proc. CSEE 36, 233–239 (2016). https://doi.org/10.13334/j.0258-8013.pcsee.161406

    Article  Google Scholar 

  17. C.R. Nobs, J. Naish, L.W. Packer et al., Computational evaluation of N-16 measurements for a 14 MeV neutron irradiation of an ITER first wall component with water circuit. Fusion Eng. Des. 159, 111743 (2020). https://doi.org/10.1016/j.fusengdes.2020.111743

    Article  Google Scholar 

  18. H.L. Swami, M. Abhangi, S. Sharma et al., A neutronic experiment to support the design of an Indian TBM shield module for ITER. Plasma Sci. Technol. 21, 065601 (2019). https://doi.org/10.1088/2058-6272/ab079a

    Article  ADS  Google Scholar 

  19. C. Yin, D. Terentyev, S. Van Dyck et al., Effect of high-temperature neutron irradiation on fracture toughness of ITER-specification tungsten. Phys. Scr. 2020, 014052 (2020). https://doi.org/10.1088/2058-6272/ab079a

    Article  Google Scholar 

  20. Overview of the ITER policy on electronics exposed to radiation

  21. Overview of the implementing procedure of the ITER policy on electronics exposed to radiation

  22. J. Prinzie, F.M. Simanjuntak, P. Leroux et al., Low-power electronic technologies for harsh radiation environments. Nat. Electron. 4, 243–253 (2021). https://doi.org/10.1038/s41928-021-00562-4

    Article  Google Scholar 

  23. D. Li, C. Li, M. **ao et al., Deconstructing plasma fog collection technology: an experimental study on factors impacting collection efficiency. J. Phys. D Appl. Phys. 75, 075201 (2024). https://doi.org/10.1088/1361-6463/ad0ac2

    Article  ADS  Google Scholar 

  24. G. Liu, X. Wang, M. Li et al., Effects of high-energy proton irradiation on separate absorption and multiplication GaN avalanche photodiode. Nucl. Sci. Tech. 29, 139 (2018). https://doi.org/10.1007/s41365-018-0480-3

    Article  Google Scholar 

  25. S. Yue, Z. Chen, Z. Zhang et al., Synergistic effect of electrical stress and neutron irradiation on silicon carbide power MOSFETs. IEEE Trans. Electron. Dev. 69, 3341–3346 (2022). https://doi.org/10.1109/TED.2022.3170539

    Article  ADS  Google Scholar 

  26. R. Chen, Y. Liang, J. Han et al., Research on the synergistic effect of total ionization and displacement dose in GaN HEMT using neutron and gamma-ray irradiation. Nanomaterials 12, 2126 (2022). https://doi.org/10.3390/nano12132126

    Article  Google Scholar 

  27. F. Ravotti, M. Glaser, M. Moll et al., BPW34 commercial p-i-n diodes for high-level 1-MeV neutron equivalent fluence monitoring. IEEE Trans. Nucl. Sci. 55, 2133–2140 (2008). https://doi.org/10.1109/TNS.2008.2000765

    Article  ADS  Google Scholar 

  28. J. Mekki, M. Moll, M. Fahrer et al., Prediction of the response of the commercial BPW34FS silicon p-i-n diode used as radiation monitoring sensors up to very high fluences. IEEE Trans. Nucl. Sci. 57, 2066–2073 (2010). https://doi.org/10.1109/TNS.2010.2044191

    Article  ADS  Google Scholar 

  29. C. Liu, C. Yang, W. Chen et al., Experimentally demonstrating fast neutron irradiation effect on high-di/dt switching characteristics of insulated gate triggered thyristor for pulse power, in 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD) (2022), 177–180. https://doi.org/10.1109/ISPSD49238.2022.9813637

  30. S.J. Watts, J. Matheson, I.H. Hopkins-Bond et al., A new model for generation-recombination in silicon depletion regions after neutron irradiation. IEEE Trans. Nucl. Sci. 43, 2587–2594 (1996). https://doi.org/10.1109/23.556840

    Article  ADS  Google Scholar 

  31. U. Biggeri, E. Borchi, M. Bruzzi et al., Comparison of radiation damage in silicon detectors induced by pions, protons and neutrons. Il Nuovo Cimento A 1965–1970(109), 1351–1358 (1996). https://doi.org/10.1007/BF02773521

    Article  ADS  Google Scholar 

  32. T.K. Maiti, C.K. Maiti, Modeling of radiation-induced displacement damage in silicon solar cells: Frenkel defect, in 2009 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (2009), pp. 647–649. https://doi.org/10.1109/IPFA.2009.5232562

  33. P. Chen, Radiation Effects on Semiconductor Devices and Integrated Circuits (National Defense Industry Press, Bei**g, 2005)

    Google Scholar 

  34. E. Liu, B. Zhu, J. Luo, The Physics of Semiconductors, 7th edn. (Publishing House of Electronics Industry, Bei**g, 2017)

    Google Scholar 

  35. W. Tong, H. Li, P. Fu et al., Parameter optimization of thyristor snubber circuit in LSTF quench protection system. IEEE Access 7, 81257–81265 (2019). https://doi.org/10.1109/ACCESS.2019.2923442

    Article  Google Scholar 

  36. P. Górecki, D. Wojciechowski, Accurate computation of IGBT junction temperature in PLECS. IEEE Tran. Electron Dev. 67, 2865–2871 (2020). https://ieeexplore.ieee.org/document/9093206

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Wei Tong, Meng Xu, Hua Li, Zhi-Quan Song and Bo Chen. The first draft of the manuscript was written by Wei Tong and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hua Li or Meng Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

This work was supported by the Fundamental Research Funds for the Central University (No. JZ2023HGTA0182) and Comprehensive Research Facility for Fusion Technology Program of China (No. 2018-000052-73-01-001228).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, W., Li, H., Xu, M. et al. Neutron irradiation influence on high-power thyristor device under fusion environment. NUCL SCI TECH 35, 72 (2024). https://doi.org/10.1007/s41365-024-01433-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01433-1

Keywords

Navigation