Log in

Heavy ion energy influence on multiple-cell upsets in small sensitive volumes: from standard to high energies

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices. However, owing to the minimum physical gate length of only 35 nm, the physical area of a standard 6T SRAM unit is approximately \(0.16\,\upmu \hbox{m}^{2}\), resulting in a significant enhancement of multi-cell charge-sharing effects. Multiple-cell upsets (MCUs) have become the primary physical mechanism behind single-event upsets (SEUs) in advanced nanometer node devices. The range of ionization track effects increases with higher ion energies, and spacecraft in orbit primarily experience SEUs caused by high-energy ions. However, ground accelerator experiments have mainly obtained low-energy ion irradiation data. Therefore, the impact of ion energy on the SEU cross section, charge collection mechanisms, and MCU patterns and quantities in advanced nanometer devices remains unclear. In this study, based on the experimental platform of the Heavy Ion Research Facility in Lanzhou, low- and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices. The influence of ion energy on the charge collection processes of small-sensitive-volume devices, MCU patterns, and upset cross sections was obtained, and the applicable range of the inverse cosine law was clarified. The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.16436 and https://www.doi.org/10.57760/sciencedb.16436.

References

  1. R.C. Martin, N.M. Ghoniem, Y. Song et al., The size effect of ion charge tracks on single event multiple-bit upset. IEEE Trans. Nucl. Sci. 34, 1305–1309 (1987). https://doi.org/10.1109/TNS.1987.4337470

    Article  ADS  Google Scholar 

  2. W.J. Stapor, P.T. McDonald, A.R. Knudson et al., Charge collection in silicon for ions of different energy but same linear energy transfer (LET). IEEE Trans. Nucl. Sci. 35, 1585–1590 (1988). https://doi.org/10.1109/23.25502

    Article  ADS  Google Scholar 

  3. S. Duzellier, D. Falguere, L. Mouliere et al., SEE results using high energy ions. IEEE Trans. Nucl. Sci. 425, 1797–1802 (1995). https://doi.org/10.1109/23.488781

    Article  ADS  Google Scholar 

  4. P.E. Dodd, O. Musseau, M.R. Shaneyfelt et al., Impact of ion energy on single-event upset. IEEE Trans. Nucl. Sci. 45, 2483–2491 (1998). https://doi.org/10.1109/23.736489

    Article  ADS  Google Scholar 

  5. P.E. Dodd, J.R. Schwank, M.R. Shaneyfelt et al., Heavy ion energy effects in CMOS SRAMs. IEEE Trans. Nucl. Sci. 54, 889–893 (2007). https://doi.org/10.1109/TNS.2007.893425

    Article  ADS  Google Scholar 

  6. P.E. Dodd, J.R. Schwank, M.R. Shaneyfelt et al., Impact of heavy ion energy and nuclear interactions on single-event upset and latchup in integrated circuits. IEEE Trans. Nucl. Sci. 54, 2303–2311 (2007). https://doi.org/10.1109/TNS.2007.909844

    Article  ADS  Google Scholar 

  7. R.A. Reed, R.A. Weller, M.H. Mendenhall et al., Impact of ion energy and species on single event effects analysis. IEEE Trans. Nucl. Sci. 54, 2312–2321 (2007). https://doi.org/10.1109/TNS.2007.909901

    Article  ADS  Google Scholar 

  8. Z. Zhang, Z. Lei, Y. En et al., Monte-Carlo prediction of single-event characteristics of 65 nm CMOS SRAM under hundreds of MeV/n heavy-ions in space. In: Paper presented at the 16th European Conference on Radiation and its Effects on Components and Systems ( Bremen, Germany, 19-23 Sept. 2016). https://doi.org/10.1109/RADECS.2016.8093178

  9. S. Gu, J.Liu, J.Bi et al., The impacts of heavy ion energy on single event upsets in SOI SRAMs. IEEE Trans. Nucl. Sci. 65, 1091-1100 (2018). https://doi.org/10.1109/TNS.2018.2817574

  10. J.Z. Liu, S. Yan, J. Xue et al., Impact of Coulomb elastic scattering of protons and iron ions on single-event upsets in a 22 nm SOI SRAM. Nucl. Instrum. Methods Phys. Res. B. 478, 187–193 (2020). https://doi.org/10.1016/j.nimb.2020.06.030

    Article  ADS  Google Scholar 

  11. M. Raine, M. Gaillardin, J.-E. Sauvestre et al., Effect of the ion mass and energy on the response of 70-nm SOI transistors to the ion deposited charge by direct ionization. IEEE Trans. Nucl. Sci. 57, 1892–1899 (2010). https://doi.org/10.1109/TNS.2010.2048926

    Article  ADS  Google Scholar 

  12. M. Raine, G. Hubert, M. Gaillardin et al., Impact of the radial ionization profile on SEE prediction for SOI transistors and SRAMs beyond the 32-nm technological node. IEEE Trans. Nucl. Sci. 58, 840–847 (2011). https://doi.org/10.1109/TNS.2011.2109966

    Article  ADS  Google Scholar 

  13. M. Raine, G. Hubert, M. Gaillardin et al., Monte Carlo prediction of heavy ion induced MBU sensitivity for SOI SRAMs using radial ionization profile. IEEE Trans. Nucl. Sci. 58, 2607–2613 (2011). https://doi.org/10.1109/TNS.2011.2168238

    Article  ADS  Google Scholar 

  14. M. Raine, G. Hubert, P. Paillet et al., Implementing realistic heavy ion tracks in a SEE prediction tool: Comparison between different approaches. IEEE Trans. Nucl. Sci. 59, 950–957 (2012). https://doi.org/10.1109/TNS.2012.2186827

    Article  ADS  Google Scholar 

  15. S. Boorboor, S.A.H. Feghhi, H. Jafari, Investigation of radial dose effect on single event upset cross-section due to heavy ions using GEANT4. Radiat. Meas. 78, 42–47 (2015). https://doi.org/10.1016/j.radmeas.2014.10.001

    Article  Google Scholar 

  16. C. Geng, J. Liu, K. ** et al., Modeling and assessing the influence of linear energy transfer on multiple bit upset susceptibility. Chinese Phys. B. 22, 109501 (2023). https://doi.org/10.1088/1674-1056/22/10/109501

    Article  ADS  Google Scholar 

  17. Y.H. Luo, F. Zhang, W. Chen et al., The influence of ion track characteristics on single-event upsets and multiple-cell upsets in nanometer SRAM. IEEE Trans. Nucl. Sci. 68, 1111–1119 (2021). https://doi.org/10.1109/TNS.2021.3067451

    Article  ADS  Google Scholar 

  18. Y.Q. Chi, P.C. Huang, Q. Sun et al., Characterization of single-event upsets induced by high-LET heavy ions in 16-nm bulk FinFET SRAMs. IEEE Trans. Nucl. Sci. 69, 1176–1181 (2022). https://doi.org/10.1109/TNS.2021.3127567

    Article  Google Scholar 

  19. X.S. Jiang, Y.H. Luo, W. Zhao et al., Influences of well contact on multiple-cell upsets in 28 nm SRAM. Acta Phys. Sin. 72, 229–235 (2023). https://doi.org/10.7498/aps.72.20221742

    Article  Google Scholar 

  20. T. Colladant, A. L’Hoir, J.E. Sauvestre et al., Monte-Carlo simulations of ion track in silicon and influence of its spatial distribution on single event effects. Nucl. Instrum. Methods Phys. Res. B. 245, 464–474 (2006). https://doi.org/10.1016/j.nimb.2005.11.144

    Article  ADS  Google Scholar 

  21. X.B. Cao, L.Y. **ao, M.X. Huo et al., Heavy ion-induced single event upset sensitivity evaluation of 3D integrated static random access memory. Nucl. Sci. Tech. 29, 31 (2018). https://doi.org/10.1007/s41365-018-0377-1

    Article  ADS  Google Scholar 

  22. S. Gao, J.H. Yang, B. Ye et al., Differences in MBUs induced by high-energy and medium-energy heavy ions in 28 nm FPGAs. Nucl. Sci. Tech. 33, 112 (2022). https://doi.org/10.1007/s41365-022-01099-7

    Article  Google Scholar 

  23. J.Z. Liu, S. Yan, J. Xue et al., Comparison of ionization track structure models for electronic devices of different sizes. Nucl. Instrum. Methods Phys. Res. B. 444, 43–49 (2019). https://doi.org/10.1016/j.nimb.2019.01.031

    Article  ADS  Google Scholar 

  24. P. Li, W. Guo, Z. Zhao et al., Impact of heavy ion species and energy on SEE characteristics of three-dimensional integrated circuit. In: Paper Presented at the 19th CCF Conference (Hefei, China, 18-20 Oct.2015) https://doi.org/10.1007/978-3-662-49283-316

  25. B. Ye, L.H. Mo, P.F. Zhai et al., Impact of heavy ion energy and species on single-event upset in commercial floating gate cells. Microelectron. Reliab. 120, 114128 (2021). https://doi.org/10.1016/j.microrel.2021.114128

    Article  Google Scholar 

  26. C. Inguimbert, R. Ecoffet, D. Falguère, Electron induced SEUs: Microdosimetry in nanometric volumes. IEEE Trans. Nucl. Sci. 62, 2846–2852 (2015). https://doi.org/10.1109/TNS.2015.2494615

    Article  ADS  Google Scholar 

  27. J.D. Black, D.R. Ball II., W.H. Robinson et al., Characterizing SRAM single event upset in terms of single and multiple node charge collection. IEEE Trans. Nucl. Sci. 55, 2943–2947 (2008). https://doi.org/10.1109/TNS.2008.2007231

    Article  ADS  Google Scholar 

  28. K. Osada, K. Yamaguchi, Y. Saitoh et al., SRAM immunity to cosmic-ray-induced multierrors based on analysis of an induced parasitic bipolar effect. IEEE J. Solid State Circuits 39, 827–833 (2004). https://doi.org/10.1109/JSSC.2004.826321

    Article  ADS  Google Scholar 

  29. N.J. Gaspard, A.F. Witulski, N.M. Atkinson et al., Impact of well structure on single-event well potential modulation in bulk CMOS. IEEE Trans. Nucl. Sci. 58,2614-2620 (2011)). https://doi.org/10.1109/TNS.2011.2171366

  30. L.L. Ding, T. Wang, F. Zhang et al., An analytical model to evaluate well-potential modulation and bipolar amplification effects. IEEE Trans. Nucl. Sci. 70, 1724–1731 (2023). https://doi.org/10.1109/TNS.2023.3266005

    Article  ADS  Google Scholar 

  31. Q.W. Zheng, J. Cui, W. Lu et al., Total ionizing dose influence on the single-event multiple-cell upsets in 65-nm 6-T SRAM. IEEE Trans. Nucl. Sci. 66, 892–898 (2019). https://doi.org/10.1109/TNS.2018.2875451

    Article  ADS  Google Scholar 

  32. T. Kato, T. Yamazaki, K. Maruyama et al., The impact of multiple-cell charge generation on multiple-cell upset in a 20-nm bulk SRAM. IEEE Trans. Nucl. Sci. 65, 1900–1907 (2018). https://doi.org/10.1109/TNS.2018.2830781

    Article  ADS  Google Scholar 

  33. P.E. Dodd, M.R. Shaneyfelt, F.W. Sexton, Charge collection and SEU from angled ion strikes. IEEE Trans. Nucl. Sci. 44, 2256–2265 (1997). https://doi.org/10.1109/23.659044

    Article  ADS  Google Scholar 

  34. Z.Z. Li, Y. Jiao, J. Bi et al., The mechanism of heavy ion incident angle on the reliability of MOS device. Microelectron Reliab. 135, 114604 (2022). https://doi.org/10.1016/j.microrel.2022.114604

    Article  Google Scholar 

  35. L.Q. Zhang, J. Lu, J.L. Xu et al., Influence of tilted angle on effective linear energy transfer in single event effect tests for integrated circuits at 130 nm technology node. Chinese Phys. Lett. 34, 118504 (2017). https://doi.org/10.1088/0256-307X/34/11/118504

    Article  ADS  Google Scholar 

  36. Z.G. Zhang, J. Liu, M.D. Hou et al., Angular dependence of multiple-bit upset response in static random access memories under heavy ion irradiation. Chinese Phys. B. 22, 086–102 (2013). https://doi.org/10.1088/1674-1056/22/8/086102

    Article  Google Scholar 

  37. C. Geng, J. Liu, K. ** et al., Monte Carlo evaluation of spatial multiple-bit upset sensitivity to oblique incidence. Chinese Phys. B 22, 059501 (2013). https://doi.org/10.1088/1674-1056/22/5/059501

    Article  ADS  Google Scholar 

  38. Z.G. Zhang, L. Jie, M.D. Hou et al., Azimuthal dependence of single-event and multiple-bit upsets in SRAM devices with anisotropic layout. Nucl. Sci. Tech. 26, 050404 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.050404

  39. Y.H. Luo, F. Zhang, C. Wei et al., The orientational dependence of single event upsets and multiple-cell upsets in 65 nm dual DICE SRAM. Microelectron Reliab. 94, 24–31 (2019). https://doi.org/10.1016/j.microrel.2019.01.013

    Article  Google Scholar 

  40. E.L. Petersen, J.C. Pickel, E.C. Smith et al., Geometrical factors in SEE rate calculations. IEEE Trans. Nucl. Sci. 40, 1888–1909 (1993). https://doi.org/10.1109/23.273465

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Heavy Ion Research Facility in Lanzhou (HIRFL) and the HI-13 Tandem Accelerator for their support during testing.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yang Jiao, Li-Hua Mo, **-Hu Yang and Pei-**ong Zhao. The first draft of the manuscript was written by Yang Jiao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Pei-**ong Zhao or Jie Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12105341 and 12035019) and the opening fund of Key Laboratory of Silicon Device and Technology, Chinese Academy of Sciences (No. KLSDTJJ2022-3).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Mo, LH., Yang, JH. et al. Heavy ion energy influence on multiple-cell upsets in small sensitive volumes: from standard to high energies. NUCL SCI TECH 35, 85 (2024). https://doi.org/10.1007/s41365-024-01427-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01427-z

Keywords

Navigation