Log in

Automatic spectrum recognition system for charge state analysis in electron cyclotron resonance ion sources

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The Electron Cyclotron Resonance (ECR) ion source is a critical device for producing highly charged ion beams in various applications. Analyzing the charge-state distribution of the ion beams is essential, but the manual analysis is labor-intensive and prone to inaccuracies due to impurity ions. An automatic spectrum recognition system based on intelligent algorithms was proposed for rapid and accurate chargestate analysis of ECR ion sources. The system employs an adaptive window-length Savitzky–Golay (SG) filtering algorithm, an improved automatic multiscale peak detection (AMPD) algorithm, and a greedy matching algorithm based on the relative distance to accurately match different peaks in the spectra with the corresponding charge-state ion species. Additionally, a user-friendly operator interface was developed for ease of use. Extensive testing on the online ECR ion source platform demonstrates that the system achieves high accuracy, with an average root mean square error of less than 0.1 A for identifying charge-state spectra of ECR ion sources. Moreover, the system minimizes the standard deviation of the first-order derivative of the smoothed signal to 81.1846 A. These results indicate the capability of the designed system to identify ion beam spectra with mass numbers less than Xe, including Xe itself. The proposed automatic spectrum recognition system represents a significant advancement in ECR ion source analysis, offering a rapid and accurate approach for charge-state analysis while enhancing supply efficiency. The exceptional performance and successful implementation of the proposed system on multiple ECR ion source platforms at IMPCAS highlight its potential for widespread adoption in ECR ion source research and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.08240 and https://cstr.cn/31253.11.sciencedb.08240.

References

  1. R. Geller, ECRIS: The electron cyclotron resonance ion sources. Annu. Rev. Neurosci. 40, 15–44 (1990). https://doi.org/10.1201/9780203758663

    Article  ADS  Google Scholar 

  2. Q. Wu, Y.G. Liu, J.L. Liu et al., Design of a high current ion source for an electromagnetic isotope separator. Nucl. Tech. 46, 030202 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.030202(inChinese)

    Article  Google Scholar 

  3. D. Leitner, C.M. Lyneis, T. Loew et al., Status report of the 28 GHz superconducting electron cyclotron resonance ion source. Venus. Rev. Sci. Instrum. 77(3), 03A302 (2006). https://doi.org/10.1063/1.2149298

    Article  Google Scholar 

  4. T. Nakagawa, Y. Higurashi, J. Ohnishi et al., First results from the new RIKEN superconducting electron cyclotron resonance ion source. Rev. Sci. Instrum. 81(2), 02A320 (2010). https://doi.org/10.1063/1.3259232

    Article  Google Scholar 

  5. H. Zhao, L.T. Sun, J.W. Guo et al., Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source. Phys. Rev. Accel. Beams. 20(9), 094801 (2017). https://doi.org/10.1103/physrevaccelbeams.20.094801

    Article  ADS  Google Scholar 

  6. H.F. **ao, Q.X. Zhang, H.Y. Tan et al., The study of a neutron spectrum unfolding method based on particle swarm optimization combined with maximum likelihood expectation maximization. Nucl. Sci. Tech. 34, 60 (2023). https://doi.org/10.1007/s41365-023-01200-8

    Article  Google Scholar 

  7. Z.Y. Yao, Y.S. **ao, J.Z. Zhao, Dose reconstruction with Compton camera during proton therapy via subset-driven origin ensemble and double evolutionary algorithm. Nucl. Sci. Tech. 34, 59 (2023). https://doi.org/10.1007/s41365-023-01207-1

    Article  Google Scholar 

  8. R.Y. Wu, C.R. Geng, F. Tian et al., GPU-accelerated three-dimensional reconstruction method of the Compton camera and its application in radionuclide imaging. Nucl. Sci. Tech. 34, 52 (2023). https://doi.org/10.1007/s41365-023-01199-y

    Article  Google Scholar 

  9. S.C. Zheng, Q.Q. Pan, H.W. Lv et al., Semi-empirical and semi-quantitative lightweight shielding design algorithm. Nucl. Sci. Tech. 34, 43 (2023). https://doi.org/10.1007/s41365-023-01187-2

    Article  Google Scholar 

  10. H. Li, J. Shi, L. Li et al., Novel wavelet threshold denoising method to highlight the first break of noisy microseismic recordings. IEEE T. Geosci. Remote. 60, 1–10 (2022). https://doi.org/10.1109/tgrs.2022.3142089

    Article  Google Scholar 

  11. L. Hu, L. Wang, Y. Chen et al., Bearing fault diagnosis using piecewise aggregate approximation and complete ensemble empirical mode decomposition with adaptive noise. Sensors. 22(17), 6599 (2022). https://doi.org/10.3390/s22176599

    Article  ADS  Google Scholar 

  12. K. Hasan, S.T. Meraj, M.M. Othman et al., Savitzky–Golay filter-based PLL: Modeling and performance validation. IEEE T Instrum. Meas. 71, 1–6 (2022). https://doi.org/10.1109/tim.2022.3196946

    Article  Google Scholar 

  13. V.C.B. Sousa, C. Scalo, A Legendre spectral viscosity (LSV) method applied to shock capturing for high-order flux reconstruction schemes. J. Comput. Phys. 460, 111157 (2022). https://doi.org/10.1016/j.jcp.2022.111157

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Chen, A. Badji, S. Laghrouche et al., Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm. Appl. Energ. 318, 119099 (2022). https://doi.org/10.1016/j.apenergy.2022.119099

    Article  Google Scholar 

  15. F. Wu, X. Kong, C. Xu, Test on stochastic block model: Local smoothing and extreme value theory. J. Syst. Sci. Complex. 35(4), 1535–1556 (2022). https://doi.org/10.1007/s11424-021-0154-9

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Wang, Y. Wang, Y. Min et al., Blind source separation of transformer acoustic signal based on sparse component analysis. Energies 15(16), 6017 (2022). https://doi.org/10.3390/en15166017

    Article  Google Scholar 

  17. H. Kennedy, Recursive digital filters with tunable lag and lead characteristics for proportional-differential control. IEEE T. Contr. Syst. T. 23(6), 2369–2374 (2015). https://doi.org/10.1109/tcst.2015.2399436

    Article  Google Scholar 

  18. E.N. Nishida, O.O. Dutra, L.H.C. Ferreira et al., Application of Savitzky–Golay digital differentiator for QRS complex detection in an electrocardiographic monitoring system. in 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA). (Rochester, MN, USA, 2017). https://doi.org/10.1109/memea.2017.7985881

  19. D. Suescún-Díaz, H.F. Bonilla-Londoño, J.H. Figueroa-Jimenez, Savitzky-Golay filter for reactivity calculation. J. Nucl. Sci. Technol. 53(7), 944–950 (2016). https://doi.org/10.1080/00223131.2015.1082949

    Article  Google Scholar 

  20. K. Pandia, S. Ravindran, R. Cole et al., Motion artifact cancellation to obtain heart sounds from a single chest-worn accelerometer. in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. (Dallas, TX, USA,2010). doi: https://doi.org/10.1109/icassp.2010.5495553

  21. J.M. Gregoire, D. Dale, R.B. Van Dover, A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data. Rev. Sci. Instrum. 82(1), 015105 (2011). https://doi.org/10.1063/1.3505103

    Article  ADS  Google Scholar 

  22. J.S. Park, S.W. Lee, U. Park, R peak detection method using wavelet transform and modified shannon energy envelope. J. Healthc. Eng. 2017, 4901017 (2017). https://doi.org/10.1155/2017/4901017

    Article  Google Scholar 

  23. N. Mtetwa, L.S. Smith, Smoothing and thresholding in neuronal spike detection. Neurocomputing 69(10–12), 1366–1370 (2006). https://doi.org/10.1016/j.neucom.2005.12.108

    Article  Google Scholar 

  24. P. Sedighian, A.W. Subudhi, F. Scalzo et al., Pediatric heart sound segmentation using Hidden Markov Model. in 2014 36th annual international conference of the IEEE engineering in medicine and biology society. (Chicago, IL, USA, 2014). https://doi.org/10.1109/embc.2014.6944869

  25. C.L. Forgy, Rete: A fast algorithm for the many pattern/many object pattern match problem. Read. Artif. Intell. Datab. (1989). https://doi.org/10.1016/0004-3702(82)90020-0

    Article  Google Scholar 

  26. A. Bouchet, Greedy algorithm and symmetric matroids. Math. Program. 38, 147–159 (1987). https://doi.org/10.1007/bf02604639

    Article  MathSciNet  MATH  Google Scholar 

  27. Z. He, S. Deng, X. Xu et al., A fast greedy algorithm for outlier mining. in Advances in Knowledge Discovery and Data Mining: 10th Pacific-Asia Conference, PAKDD 2006, (Singapore, April 9–12, 2006). https://doi.org/10.1007/11731139_67

  28. Z. Zhao, M. Zhou, S. Liu, Iterated greedy algorithms for flow-shop scheduling problems: A tutorial. IEEE T. Autom. Sci. Eng. 19, 1941–1959 (2021). https://doi.org/10.1109/tase.2021

    Article  Google Scholar 

  29. C.T. Ryan, R.L. Smith, A greedy algorithm for finding maximum spanning trees in infinite graphs. Oper. Res. Lett. 50(6), 655–659 (2022). https://doi.org/10.1016/j.orl.2022.10.004

    Article  MathSciNet  MATH  Google Scholar 

  30. X. Han, Y. Han, Q. Chen et al., Distributed flow shop scheduling with sequence-dependent setup times using an improved iterated greedy algorithm. Complex Adapt. Syst. Model. 1(3), 198–217 (2021). https://doi.org/10.23919/csms.2021.0018

    Article  Google Scholar 

  31. H.P. Vinutha, B. Poornima, B.M. Sagar, Detection of outliers using interquartile range technique from intrusion dataset. in Information and Decision Sciences: Proceedings of the 6th International Conference on FICTA. (Bhubaneswar, Odisha, 2018). https://doi.org/10.1007/978-981-10-7563-6_53

  32. A. Hoshiar, T.A. Le, F. Amin et al., A novel magnetic actuation scheme to disaggregate nanoparticles and enhance passage across the blood–brain barrier. Nanomater. Basel. 8(1), 3 (2017). https://doi.org/10.3390/nano8010003

    Article  Google Scholar 

  33. M. Tokarska, M. Frydrysiak, J. Zięba, Electrical properties of flat textile material as inhomegeneous and anisotropic structure. J. Mater. Sci. Mater. EL. 24, 5061–5068 (2013). https://doi.org/10.1007/s10854-013-1524-4

    Article  Google Scholar 

  34. S. Sepúlveda, P. Reyes, A. Weinstein. Visualizing physiological signals in real-time. in Proceedings of the 14th Python in Science Conference (Austin, Texas, 2015). https://doi.org/10.25080/majora-7b98e3ed-01c

  35. S.W. Bai, X.F. Yang, S.J. Wang et al., Commissioning of a high-resolution collinear laser spectroscopy apparatus with a laser ablation ion source. Nucl. Sci. Tech. 33, 9 (2022). https://doi.org/10.1007/s41365-022-00992-5

    Article  Google Scholar 

  36. M. Sadeghi, F. Behnia, R. Amiri, Window selection of the Savitzky-Golay filters for signal recovery from noisy measurements. IEEE T. Instrum. Meas. 69(8), 5418–5427 (2020). https://doi.org/10.1109/tim.2020.2966310

    Article  ADS  Google Scholar 

  37. B.H. Prasetio, E.R. Widasari, H. Tamura. Automatic multiscale-based peak detection on short time energy and spectral centroid feature extraction for conversational speech segmentation. in 6th International Conference on Sustainable Information Engineering and Technology 2021. (Malang, 2021) https://doi.org/10.1145/3479645.3479675

  38. H. Zhao, B. Tian, B. Chen, Robust stable iterated unscented Kalman filter based on maximum correntropy criterion. Automatica 142, 110410 (2022). https://doi.org/10.1016/j.automatica.2022.110410

    Article  MathSciNet  MATH  Google Scholar 

  39. C. Leys, C. Ley, O. Klein et al., Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49(4), 764–766 (2013). https://doi.org/10.1016/j.jesp.2013.03.013

    Article  Google Scholar 

  40. X. Wan, W. Wang, J. Liu et al., Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 14, 135 (2014). https://doi.org/10.1186/1471-2288-14-135

    Article  Google Scholar 

  41. Y. Luo, W.P. Lin, P.P. Ren et al., A simulation study of a windowless gas strip** room in an E//B neutral particle analyzer. Nucl. Sci. Tech. 32, 69 (2021). https://doi.org/10.1007/s41365-021-00909-8

    Article  Google Scholar 

  42. G. Taubin, Curve and surface smoothing without shrinkage. in Proceedings of IEEE international conference on computer vision. (Cambridge, MA, USA ,1995). https://doi.org/10.1109/iccv.1995.466848

  43. S. Yuan, Review of root-mean-square error calculation methods for large deployable mesh reflectors. Int. J. Aerosp. Eng. 2022, 5352146 (2022). https://doi.org/10.1155/2022/5352146

    Article  Google Scholar 

  44. V. Savalei, The relationship between root mean square error of approximation and model misspecification in confirmatory factor analysis models. Educ. Psychol. Meas. 72(6), 910–932 (2012). https://doi.org/10.1177/0013164412452564

    Article  Google Scholar 

  45. N.V. De Giesen, S.C. Steele-Dunne, J. Jansen et al., Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing data. Sensors 12(5), 5471–5485 (2012). https://doi.org/10.3390/s120505471

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Rui Wang and Cheng Qian. Yu-Hui Guo contributed to the key revisions of the manuscript. Peng Zhang and **-Dou Ma guided some physical aspects of the experiments. The first draft of the manuscript was written by Rui Wang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu-Hui Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Qian, C., Guo, YH. et al. Automatic spectrum recognition system for charge state analysis in electron cyclotron resonance ion sources. NUCL SCI TECH 34, 178 (2023). https://doi.org/10.1007/s41365-023-01326-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01326-9

Keywords

Navigation