Log in

Ultrahigh accelerating gradient and quality factor of CEPC 650 MHz superconducting radio-frequency cavity

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Two 650 MHz single-cell superconducting radio-frequency (SRF) cavities used for the Circular Electron Positron Collider (CEPC) were studied to achieve a high accelerating gradient (Eacc) and high intrinsic quality factor (Q0). The 650 MHz single-cell cavities were subjected to a combination of buffered chemical polishing (BCP) and electropolishing (EP), and their Eacc exceeded 40 MV/m. Such a high Eacc may result from the cold EP with more uniform removal. BCP is easy, cheap, and rough, whereas EP is complicated, expensive, and precise. Therefore, the combination of BCP and EP investigated in this study is suitable for surface treatments of mass SRF cavities. Medium temperature (mid-T) furnace baking was also conducted, which demonstrated an ultrahigh Q0 of 8 × 1010 at 22 MV/m for both cavities, and an extremely low BCS resistance (RBCS) of ~ 1.0 nΩ was achieved at 2.0 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Padamsee, 50 years of success for SRF accelerators—a review. Supercond. Sci. Technol. 30, 053003 (2017). https://doi.org/10.1088/1361-6668/aa6376

    Article  ADS  Google Scholar 

  2. P. Sha, J.K. Hao, W.M. Pan et al., Nitrogen do**/infusion of 650 MHz cavities for CEPC. Nucl. Sci. Tech. 32, 45 (2021). https://doi.org/10.1007/s41365-021-00881-3

    Article  Google Scholar 

  3. T. Dohmae, K. Umemori, M. Yamanaka et al., Investigation of in-house superconducting radio-frequency 9-cell cavity made of large grain niobium at KEK. Nucl. Instrum. Methods Phys. Res. A 875, 1–9 (2017). https://doi.org/10.1016/j.nima.2017.08.050

    Article  ADS  Google Scholar 

  4. X.Y. Pu, H.T. Hou, Y. Wang et al., Frequency sensitivity of the passive third harmonic superconducting cavity for SSRF. Nucl. Sci. Tech. 31, 31 (2020). https://doi.org/10.1007/s41365-020-0732-x

    Article  Google Scholar 

  5. D. Reschke, V. Gubarev, J. Schaffran et al., Performance in the vertical test of the 832 nine-cell 1.3 GHz cavities for the European X-ray Free Electron Laser. Phys. Rev. Accel. Beams 20, 042004 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.042004

    Article  ADS  Google Scholar 

  6. Y.X. Zhang, J.F. Chen, D. Wang, RF design optimization for the SHINE 3.9 GHz cavity. Nucl. Sci. Tech. 31, 73 (2020). https://doi.org/10.1007/s41365-020-00772-z

    Article  Google Scholar 

  7. D. Gonnella, S. Aderhold, A. Burrill et al., Industrialization of the nitrogen-do** preparation for SRF cavities for LCLS-II. Nucl. Instrum. Methods Phys. Res. A 883, 143–150 (2018). https://doi.org/10.1016/j.nima.2017.11.047

    Article  ADS  Google Scholar 

  8. R. Garoby, A. Vergara, H. Danared et al., The European spallation source design. Phys. Scr. 93, 014001 (2018). https://doi.org/10.1088/1402-4896/aa9bff

    Article  ADS  Google Scholar 

  9. K. McGee, S. Kim, K. Elliott et al., Medium-velocity superconducting cavity for high accelerating gradient continuous-wave hadron linear accelerators. Phys. Rev. Accel. Beams 24, 112003 (2016). https://doi.org/10.1103/PhysRevAccelBeams.24.112003

    Article  ADS  Google Scholar 

  10. S.-H. Kim, R. Afanador, D. Barnhart et al., Overview of ten-year operation of the superconducting linear accelerator at the spallation neutron source. Nucl. Instrum. Methods Phys. Res. A 852, 20–32 (2017). https://doi.org/10.1016/j.nima.2017.02.009

    Article  ADS  Google Scholar 

  11. F. Yan, H.P. Geng, C. Meng et al., Commissioning experiences with the spoke-based CW superconducting proton linac. Nucl. Sci. Tech. 32, 105 (2021). https://doi.org/10.1007/s41365-021-00950-7

    Article  Google Scholar 

  12. M. Martinello, D. Bice, C. Boffo et al., Q-factor optimization for high-beta 650 MHz cavities for PIP-II. J. Appl. Phys. 130, 174501 (2021). https://doi.org/10.1063/5.0068531

    Article  ADS  Google Scholar 

  13. K. Saito, H. Inoue, E. Kako et al., Superiority of electropolishing over chemical polishing on high gradients. in Proceedings of the 1997 Workshop on RF Superconductivity, Abano Terme, Padova, Italy (1997), pp. 795–813

  14. L. Lilje, D. Reschke, K. Twarowski et al., Electropolishing and in-situ baking of 1.3 GHz niobium cavities, in Proceedings of the 1999 Workshop on RF Superconductivity, La Fonda Hotel, Santa Fe, New Mexico, USA (1999), pp. 74–76

  15. A. Grassellino, A. Romanenko, D. Sergatskov et al., Nitrogen and argon do** of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures. Supercond. Sci. Technol. 26, 102001 (2013). https://doi.org/10.1088/0953-2048/26/10/102001

    Article  ADS  Google Scholar 

  16. S. Posen, A. Romanenko, A. Grassellino et al., Ultralow surface resistance via vacuum heat treatment of superconducting radio-frequency cavities. Phys. Rev. Applied 13, 014024 (2020). https://doi.org/10.1103/PhysRevApplied.13.014024

    Article  ADS  Google Scholar 

  17. H. Ito, H. Araki, K. Takahashi et al., Influence of furnace baking on Q-E behavior of superconducting accelerating cavities. Prog. Theor. Exp. Phys. 2021, 071G01 (2021). https://doi.org/10.1093/ptep/ptab056

    Article  Google Scholar 

  18. R.L. Geng, G.V. Eremeev, H. Padamsee et al., High gradient studies for ILC with single-cell re-entrant shape and elliptical shape cavities made of fine-grain and large-grain niobium, in Proceedings of PAC07, Albuquerque, New Mexico, USA (2007), pp. 2337–2339

  19. T. Kubo, Y. Ajima, H. Inoue et al., In-house production of a large-grain single-cell cavity at cavity fabrication facility and results of performance tests, in Proceedings of IPAC2014, Dresden, Germany (2014), pp. 2519–2521

  20. S. Posen, A. Cravatta, M. Checchin et al., High gradient performance and quench behavior of a verification cryomodule for a high energy continuous wave linear accelerator. Phys. Rev. Accel. Beams 25, 042001 (2022). https://doi.org/10.1103/PhysRevAccelBeams.25.042001

    Article  ADS  Google Scholar 

  21. F.S. He, W.M. Pan, P. Sha et al., Medium-temperature furnace baking of 1.3 GHz 9-cell superconducting cavities at IHEP. Supercond. Sci. Technol. 34, 095005 (2021). https://doi.org/10.1088/1361-6668/ac1657

    Article  ADS  Google Scholar 

  22. The CEPC Study Group, CEPC conceptual design report: volume 1—accelerator (2018). ar**v:1809.00285

  23. J. Zhai, D. Gong, H. Zheng et al., Design of CEPC superconducting RF system. Int. J. Mod. Phys. A 34, 1940006 (2019). https://doi.org/10.1142/S0217751X19400062

    Article  ADS  Google Scholar 

  24. S. **, P. Sha, W. Pan et al., Development and vertical tests of CEPC 650 MHz single-cell cavities with high gradient. Materials 14, 7654 (2021). https://doi.org/10.3390/ma14247654

    Article  ADS  Google Scholar 

  25. T. Huang, W. Pan, G. Wang et al., The development of the 499.8 MHz superconducting cavity system for BEPCII. Nucl. Instrum. Methods Phys. Res. A 1013, 165649 (2021). https://doi.org/10.1016/j.nima.2021.165649

    Article  Google Scholar 

  26. Y. Huang, L. Liu, T. Jiang et al., 650 MHz elliptical superconducting RF cavities for CiADS project. Nucl. Instrum. Methods Phys. Res. A 988, 164906 (2021). https://doi.org/10.1016/j.nima.2020.164906

    Article  Google Scholar 

  27. F. Schlander, C. Darve, N. Elias et al., The superconducting accelerator for the ESS project, in Proceedings of the SRF2017, Lanzhou, China (2017), pp. 24–28

  28. J. Knobloch, R.L. Geng, M. Liepe et al., High-field Q slope in superconducting cavities due to magnetic field enhancement at grain boundaries, in Proceedings of the 1999 Workshop on RF Superconductivity, La Fonda Hotel, Santa Fe, New Mexico, USA (1999), pp. 77–91

  29. T. Kubo, Magnetic field enhancement at a pit on the surface of a superconducting accelerating cavity. Prog. Theor. Exp. Phys. 2015, 07G301 (2015). https://doi.org/10.1093/ptep/ptv088

    Article  Google Scholar 

  30. C. Xu, C.E. Reece, M.J. Kelley, Simulation of nonlinear superconducting rf losses derived from characteristic topography of etched and electropolished niobium surfaces. Phys. Rev. Accel. Beams 19, 033501 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.033501

    Article  ADS  Google Scholar 

  31. A. Romanenko, A. Grassellino, A.C. Crawford et al., Ultra-high quality factors in superconducting niobium cavities in ambient magnetic fields up to 190 mG. Appl. Phys. Lett. 105, 234103 (2014). https://doi.org/10.1063/1.4903808

    Article  ADS  Google Scholar 

  32. S. Huang, T. Kubo, R.L. Geng, Dependence of trapped-flux-induced surface resistance of a large-grain Nb superconducting radio-frequency cavity on spatial temperature gradient during cooldown through Tc. Phys. Rev. Accel. Beams 19, 082001 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.082001

    Article  ADS  Google Scholar 

  33. H. Padamsee, RF superconductivity: science, technology and applications (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009). (ISBN 978-3-527-40572-5)

    Book  Google Scholar 

  34. T. Kubo, A. Gurevich, Field-dependent nonlinear surface resistance and its optimization by surface nanostructuring in superconductors. Phys. Rev. B 100, 064522 (2019). https://doi.org/10.1103/PhysRevB.100.064522

    Article  ADS  Google Scholar 

  35. A. Gurevich, T. Kubo, J.A. Sauls, Challenges and opportunities of SRF theory for next generation particle accelerators. ar**v:2203.08315

  36. M. Martinello, M. Checchin, A. Romanenko et al., Field-enhanced superconductivity in high-frequency niobium accelerating cavities. Phys. Rev. Lett. 121, 224801 (2018). https://doi.org/10.1103/PhysRevLett.121.224801

    Article  ADS  Google Scholar 

  37. F. Furuta, D.J. Bice, A.C. Crawford et al., Fermilab EP facility improvement, in Proceedings of SRF’19, Dresden, Germany (2019). https://accelconf.web.cern.ch/srf2019/papers/tup022.pdf

  38. M. Checchin, LCLS-II investigation of failed LCLS-II HE prototype cavities EP analysis, TTC 2020 (Switzerland, Geneva, 2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Peng Sha, Wei-Min Pan, and Song **. The first draft of the manuscript was written by Peng Sha, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Peng Sha or Wei-Min Pan.

Additional information

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB25000000), the National Natural Science Foundation of China (No. 12075270), and the Platform of Advanced Photon Source Technology R&D.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sha, P., Pan, WM., **, S. et al. Ultrahigh accelerating gradient and quality factor of CEPC 650 MHz superconducting radio-frequency cavity. NUCL SCI TECH 33, 125 (2022). https://doi.org/10.1007/s41365-022-01109-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01109-8

Keywords

Navigation