Log in

ADS Injector-I 2 K superfluid helium cryogenic system

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The Accelerator Driven Sub-critical (ADS) system is a strategic plan to solve the nuclear waste problem for nuclear power plants in China. High-energy particle accelerators and colliders contain long strings of superconducting devices, superconducting radio frequency cavities, and magnets, which may require cooling by 2 K superfluid helium (Helium II). 2 K superfluid helium cryogenic system has become a research hot spot in the field of superconducting accelerators. In this study, the ADS Injector-I 2 K cryogenic system is examined in detail. The cryogenic system scheme design, key equipment, and technology design, such as the 2 K Joule–Thomson (J–T) heat exchanger and cryomodules CM1 + CM2 design, are examined, in addition to the commissioning and operation of the cryogenic system. The ADS Injector-I 2 K cryogenic system is the first 100 W superfluid helium system designed and built independently in China. The ADS proton beam reached 10 MeV at 10 mA in July 2016 and 10 MeV at 2 mA in continuous mode in January 2017 and has been operated reliably for over 15,000 h, proving that the design of ADS Injector-I 2 K cryogenic system, the key equipment, and technology research are reasonable, reliable, and meet the requirements. The research into key technologies provides valuable engineering experience that can be helpful for future projects such as CI-ADS (China Initiative Accelerator-Driven System), SHINE (Shanghai High Repetition Rate XFEL and Extreme Light Facility), PAPS (Platform of Advanced Photon Source Technology), and CEPC (Circular Electron-Positron Collider), thereby develo** national expertise in the field of superfluid helium cryogenic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. C. Meng, S.C. Wang, J.S. Cao, et al., Beam commissioning of C-ADS Injector-I RFQ accelerator. In: Proceedings of IPAC2015, USA, THPF057 (2015). https://doi.org/10.18429/JACoW-IPAC2015-THPF057

  2. F. Yan, H. Geng, C. Meng, et al., Commissioning and operation experience with the China ADS Injector-I CW linac. Preprint ar**v:1705.05068 (2017). https://arxiv.org/abs/1705.05068

  3. L.R. Evans, The Large Hadron Collider. In: Proceedings of IPAC1995, Dallas (1995). https://doi.org/10.1109/PAC.1995.504562

  4. P. Lebrun, Superfluid helium cryogenics for the Large Hadron Collider project at CERN. Cryogenics 34, 1–8 (1994). https://doi.org/10.1016/S0011-2275(05)80003-7

    Article  Google Scholar 

  5. P. Lebrun, L. Tavian, G. Claudet, Development of large-Capacity Refrigeration at 1.8 K for the Large Hadron Collider at CERN. No. LHC-Project-Report-6 (1996). https://cds.cern.ch/record/304763/files/lhc-project-report-6.pdf

  6. H. Weise, The TTF/VUV-FEL (FLASH) as the prototype for the European XFEL project. In: Proceedings LINAC, JACOW, pp. 486–490 (2006). https://accelconf.web.cern.ch/AccelConf/l06/PAPERS/WE1003.PDF

  7. Y. Bozhko, H. Lierl, B. Petersen et al., Requirements for the cryogenic supply of the european XFEL project at DESY. AIP Conf. Proc. (2006). https://doi.org/10.1063/1.2202588

    Article  Google Scholar 

  8. S. Wolff, The cryogenic system of Tesla. DESY-TESLA-2001-39, CM-P00040972 (2001). https://cds.cern.ch/record/558205/files/CM-P00040972.pdf

  9. J. Yoshida, K. Hosoyama, H. Nakai et al., Development of STF cryogenic system in KEK. IEEE Part. Accel. Conf. (PAC) (2007). https://doi.org/10.1109/PAC.2007.4440357

    Article  Google Scholar 

  10. H. Nakai, K. Hara, T. Honma et al., Superfluid helium cryogenic systems for superconducting RF cavities at KEK. AIP Conf. Proc. (2014). https://doi.org/10.1063/1.4860863

    Article  Google Scholar 

  11. S. Sakanaka, M. Adachi, S. Adachi, et al., Construction and commissioning of compact-ERL Injector at KEK. Proc. ERL2013, Novosibirsk, Russia (2013). https://accelconf.web.cern.ch/Accelconf/ERL2013/papers/wg102.pdf

  12. C.H. Rode, Jefferson lab 12 GeV CEBAF upgrade. AIP Conf. Proc. (2010). https://doi.org/10.1063/1.3422362

    Article  Google Scholar 

  13. X. Ting, F. Casagrande, V. Ganni et al., Status of cryogenic system for spallation neutron source's superconducting radiofrequency test facility at Oak Ridge National Lab. AIP Conf. Proc. (2012). https://doi.org/10.1063/1.4707028

    Article  Google Scholar 

  14. J.D. Fuerst, D. Horan, J. Kaluzny, et al., Tests of SRF deflecting cavities at 2 K. Proc. Int. Part. Accel. Conf. pp. 2300–2302 (2012). https://accelconf.web.cern.ch/AccelConf/IPAC2012/papers/WEPPC041.PDF

  15. D. Andrew, K. Joshua, K. Arkadiy, Thermodynamic analyses of the LCLS-II cryogenic distribution system. IEEE Trans. Appl. Supercond. 27, 1–4 (2016). https://doi.org/10.1109/TASC.2016.2646478

    Article  Google Scholar 

  16. L. Matthias, S. Belomestnykh, E. Chojnacki, et al., SRF experience with the cornell high-current erl Injector prototype. In: Proceedings of PAC, Vancouver (2009). https://inspirehep.net/record/1378347/files/tu3rai01.pdf

  17. V. Ganni, P. Knudsen, D. Arenius, Application of JLab 12 GeV helium refrigeration system for the FRIB accelerator at MSU. AIP Conf. Proc. (2014). https://doi.org/10.1063/1.4860718

    Article  Google Scholar 

  18. C. Zhang, BEPC II: construction and commissioning. Chin. Phys. C 33, 60–64 (2009). https://doi.org/10.1109/PAC.1999.795760

    Article  Google Scholar 

  19. S.P. Li, K. He, M.J. Sang et al., Technology of helium gas purification in BEPC-II cryogenic system. Cryogenics 3, 16–20 (2007). https://doi.org/10.1002/jrs.1570

    Article  Google Scholar 

  20. S.P. Li, R. Ge, Z. Zhang et al., Overall design of the ADS Injector-I cryogenic system in china. Phys. Procedia 67, 863–867 (2015). https://doi.org/10.1016/j.phpro.2015.06.145

    Article  Google Scholar 

  21. R.J. Wu, Y. Shao, J.P. Dai et al., Experimental study on failure compensation of superconducting cavity in C-ADS Injector-I. Nucl. Tech. 42, 040502 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.040502 (in Chinese)

    Article  Google Scholar 

  22. J.H. Yue, P.H. Liu, J.S. Cao et al., Beam phase and energy measurement system of ADS Injector-I. Nucl. Tech. 41, 020403 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.020403 (in Chinese)

    Article  Google Scholar 

  23. G.P. Wang, J. **ao, K. He et al., Conceptual design of cryogenic system for China spallation neutron source. Cryogenics 5, 27–30 (2009). https://doi.org/10.3969/j.issn.1000-6516.2009.05.007

    Article  Google Scholar 

  24. G.P. Wang, Y. Zhang, J. **ao et al., Design progress of cryogenic hydrogen system for China spallation neutron source. AIP Conf. Proc. 1573, 1285–1290 (2014). https://doi.org/10.1063/1.4860854

    Article  Google Scholar 

  25. X.H. Guo, Y.N. Han, J. Tao, et al., Cryogenic System for the ADS Injector-II in IMP, CAS. In: Proceedings of LINAC2012, Tel-Aviv, TUPB044 (2013). https://ir.ihep.ac.cn/handle/311005/253205

  26. J. Cui, J.P. Xu, W. Li et al., Development of a cryogenic calorimeter for investigating beam-based heat load of superconducting undulators. IEEE Trans. Appl. Supercond. 24, 1–4 (2014). https://doi.org/10.1109/tasc.2013.2293337

    Article  Google Scholar 

  27. Z.W. Zhou, M. Zhuang, X.F. Lu, Design of a real-time fault diagnosis expert system for the EAST cryoplant. Fusion Eng. Des. 87, 2002–2006 (2012). https://doi.org/10.1016/j.fusengdes.2012.04.016

    Article  Google Scholar 

  28. B.C. Jiang, H.T. Hou, Simulation of longitudinal beam dynamics with the third harmonic cavity for SSRF Phase II Project. In: Proceedings of SAP2014, Lanzhou, THPMH4 (2015). https://epaper.kek.jp/SAP2014/papers/thpmh4.pdf

  29. X.F. Niu, F. Bai, X.J. Wang et al., Cryogenic system design for HIAF iLinac. Nucl. Sci. Tech. 30, 178 (2019). https://doi.org/10.1007/s41365-019-0700-5

    Article  Google Scholar 

  30. CEPC Study Group, CEPC conceptual design report. Preprint ar**v:1809.00285 (2018). https://arxiv.org/abs/1809.00285

  31. R. Ge, S.P. Li, The key technology research for the ADS Injector-I 2 K cryogenic system. Institute of High Energy Physics, Chinese Academy of Sciences, Doctoral Dissertation (2015). https://ir.ihep.ac.cn/handle/311005/211330

  32. A. Romanenko, A. Grassellino, O. Melnychuk et al., Dependence of the residual surface resistance of superconducting radio frequency cavities on the cooling dynamics around Tc. J. Appl. Phys. 115, 184903 (2014). https://doi.org/10.1063/1.4875655

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, R., Li, SP., Han, RX. et al. ADS Injector-I 2 K superfluid helium cryogenic system. NUCL SCI TECH 31, 39 (2020). https://doi.org/10.1007/s41365-020-0742-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-0742-8

Keywords

Navigation