Log in

Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt corrosion, fission product attacks, thermal stress, and even combinations of these. In the past few years, synchrotron radiation-based materials characterization techniques have proven to be effective in revealing the microstructural evolution and failure mechanisms of the alloys under surrogating operation conditions. Here, we review the recent progress in the investigations of molten salt corrosion, tellurium (Te) corrosion, and alloy design. The valence states and distribution of chromium (Cr) atoms, and the diffusion and local atomic structure of Te atoms near the surface of corroded alloys have been investigated using synchrotron radiation techniques, which considerably deepen the understandings on the molten salt and Te corrosion behaviors. Furthermore, the structure and size distribution of the second phases in the alloys have been obtained, which are helpful for the future development of new alloy materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

adapted from [14])

Fig. 4

adapted from [56])

Fig. 5
Fig. 6

adapted from [59])

Fig. 7
Fig. 8
Fig. 9

adapted from [36])

Fig. 10

adapted from [36])

Fig. 11

Similar content being viewed by others

References

  1. L. Mathieu, D. Heuer, R. Brissot et al., The thorium molten salt reactor: Moving on from the MSBR. Prog. Nucl. Energ. 48, 664 (2006). https://doi.org/10.1016/j.pnucene.2006.07.005

    Article  Google Scholar 

  2. P.N. Haubenreich, J. Engel, Experience with the molten-salt reactor experiment. Nucl. Technol. 8, 118 (1970). https://doi.org/10.13182/NT8-2-118

    Article  Google Scholar 

  3. J. Serp, M. Allibert, O. Beneš et al., The molten salt reactor (MSR) in generation IV: Overview and perspectives. Prog. Nucl. Energy 77, 308 (2014). https://doi.org/10.1016/j.pnucene.2014.02.014

    Article  Google Scholar 

  4. H. Xu, Thorium energy and molten salt reactor R&D in China. Paper Presented at Proceedings of the ThEC13 Conference, CERN, Globe of Science and Innovation (Geneva, Switzerland, October 27-31, 2013)

  5. H.E. McCoy, The INOR-8 Story. Oak Ridge Nati. Lab. Rev. 3, 35 (1969)

    Google Scholar 

  6. H. McCoy Jr., Status of materials development for molten salt reactors (Oak Ridge National Lab, TN (USA, 1978)

    Book  Google Scholar 

  7. Z. Li, B. Leng, G. Yuan et al., R&D of Structural alloy for molten salt reactor in China. Paper presented at ASME 2016 pressure vessels and pi** conference (Vancouver, British Columbia, Canada, July 17–21, 2016)

  8. G. Bruno, G. Schumacher, H.C. Pinto et al., Measurement of the lattice misfit of the nickel-base superalloy SC16 by high-energy synchrotron radiation. Metall. Mater. Trans. A 34, 193 (2003). https://doi.org/10.1007/s11661-003-0321-8

    Article  Google Scholar 

  9. G. Zhou, J. Kou, Y. Li et al., Quantitative scanning Laue diffraction microscopy: Application to the study of 3D printed nickel-based superalloys. Quantum Beam Science 2, 13 (2018). https://doi.org/10.3390/qubs2020013

    Article  Google Scholar 

  10. G. Zhou, W. Zhu, H. Shen et al., Real-time microstructure imaging by Laue microdiffraction: A sample application in laser 3D printed Ni-based superalloys. Scientific reports 6, 28144 (2016). https://doi.org/10.1038/srep28144

    Article  Google Scholar 

  11. L. Liu, N.S. Husseini, C.J. Torbet et al., In situ imaging of high cycle fatigue crack growth in single crystal nickel-base superalloys by synchrotron X-radiation. J. Eng. Mater. Technol. 130, 021008 (2008). https://doi.org/10.1115/1.2840966

    Article  Google Scholar 

  12. T. Link, S. Zabler, A. Epishin et al., Synchrotron tomography of porosity in single-crystal nickel-base superalloys. Mater. Sci. Eng., A 425, 47 (2006). https://doi.org/10.1016/j.msea.2006.03.005

    Article  Google Scholar 

  13. M. Jensen, D. Dye, K. James et al., Residual stresses in a welded superalloy disc: Characterization using synchrotron diffraction and numerical process modeling. Metall. Mater. Trans. A 33, 2921 (2002). https://doi.org/10.1007/s11661-002-0277-0

    Article  Google Scholar 

  14. X.-X. Ye, H. Ai, Z. Guo et al., The high-temperature corrosion of Hastelloy N alloy (UNS N10003) in molten fluoride salts analysed by STXM, XAS, XRD, SEM, EPMA, TEM/EDS. Corros. Sci. 106, 249–259 (2016). https://doi.org/10.1016/j.corsci.2016.02.010

    Article  Google Scholar 

  15. J. He, Z. Zhao, Shanghai synchrotron radiation facility. National Science Review 1, 171 (2014). https://doi.org/10.1093/nsr/nwt039

    Article  Google Scholar 

  16. E.C. Miller. Metallurgy and Materials. in: Ellis CB, Thompson WE, (Eds.). Aircraft Nuclear Propulsion Project Quarterly Progress Report for Period Ending August 31, 1950 (ORNL-858). (Oak Ridge National Laboratory, TN (USA), 1950). pp. 61

  17. W.B.e. Cottrell. Aircraft Nuclear Propulsion Project Quarterly Progress Report for Period Ending March 10, 1952 (ORNL-1227), (Oak Ridge National Laboratory, TN (USA), 1952)

  18. W.H. Jordan, S.J. Cromer, A.J. Miller, Aircraft Nuclear Propulsion Project Quarterly Progress Report for Period Ending March 31, 1957 (ORNL-2274, parts 1-5) (Oak Ridge National Laboratory, TN (USA, 1957)

    Google Scholar 

  19. H.E.J. McCoy, J.R.J. Weir, Materials Development for Molten-Salt Breeder Reactors (ORNL-TM-1854) (Oak Ridge National Laboratory, TN (USA, 1967)

    Book  Google Scholar 

  20. H.E. McCoy, B. McNabb, Intergranular cracking of INOR-8 in the MSRE (ORNL-4829) (Oak Ridge National Laboratory, TN (USA, 1972)

    Book  Google Scholar 

  21. W.R. Martin, H.E. McCoy, J.R. Weir, Production of a Low-Boron Heat of Hastelloy N (ORNL-TM-1146) (Oak Ridge National Laboratory, TN (USA, 1965)

    Book  Google Scholar 

  22. H. McCoy Jr., Influence of titanium, zirconium, and hafnium additions on the resistance of modified Hastelloy N to irradiation damage at high temperature: Phase I (Oak Ridge National Lab, TN (USA, 1971)

    Book  Google Scholar 

  23. M. Hron, M. Mikisek, Experimental verification of design input of the SPHINX concept of MSR (project EROS–Experimental zero power salt reactor SR-0). Prog. Nucl. Energ. 50, 230 (2008). https://doi.org/10.1016/j.pnucene.2007.11.003

    Article  Google Scholar 

  24. V. Ignatiev, A. Surenkov, I. Gnidoy et al., Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th. U/F salt mixture. J Nucl Mater 440, 243 (2013). https://doi.org/10.1016/j.jnucmat.2013.05.001

    Article  Google Scholar 

  25. S. Delpech, E. Merle-Lucotte, T. Auger et al., MSFR: Material issues and the effect of chemistry control. Paper Presented at Gen-IV international forum (GIF): 10 years of achievments and the path forward (Paris, France, 9-10 Sep 2009)

  26. R. Wright, T. Sham, Status of metallic structural materials for molten salt reactors (Idaho National Lab, Idaho Falls, 2018)

    Book  Google Scholar 

  27. H.J. Xu, Z.T. Zhao, Current status and progresses of SSRF project. Nucl. Sci. Tech. 19, 1 (2008). https://doi.org/10.1016/S1001-8042(08)60013-5

    Article  Google Scholar 

  28. Q.-S. Wang, Q.-Y. Pan, K. Liu et al., The macromolecular crystallography beamline of SSRF. Nucl. Sci. Tech. 26, 10102 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.010102

  29. Y. Hai-Sheng, W. **ang-Jun, L. Jiong et al., The XAFS beamline of SSRF. Nucl. Sci. Tech. 050102 (2015). http://dx.doi.org/10.13538/j.1001-8042/nst.26.050102

  30. Y. Tie-Ying, W. Wen, Y. Guang-Zhi et al., Introduction of the X-ray diffraction beamline of SSRF. Nucl. Sci. Tech. 26, 20101 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.020101

  31. L.-L. Zhang, S. Yan, S. Jiang et al., Hard X-ray micro-focusing beamline at SSRF. Nucl. Sci. Tech. 26, 060101 (2015). http://dx.doi.org/10.13538/j.1001-8042/nst.26.060101

  32. H.-L. **e, B. Deng, G.-H. Du et al., Latest advances of X-ray imaging and biomedical applications beamline at SSRF. Nucl. Sci. Tech. 26, 020102 (2015). http://dx.doi.org/10.13538/j.1001-8042/nst.26.020102

  33. L.-J. Zhang, Z.-J. Xu, X.-Z. Zhang et al., Latest advances in soft X-ray spectromicroscopy at SSRF. Nucl. Sci. Tech. 26, 040101 (2015). http://dx.doi.org/10.13538/j.1001-8042/nst.26.040101

  34. C. Xue, Y. Wang, Z. Guo et al., High-performance soft x-ray spectromicroscopy beamline at SSRF. Rev. Sci. Instrum. 81, 103502 (2010). https://doi.org/10.1063/1.3491837

    Article  Google Scholar 

  35. F. Tian, X.-H. Li, Y.-Z. Wang et al., Small angle X-ray scattering beamline at SSRF. Nucl. Sci. Tech. 26, 030101 (2015). http://dx.doi.org/10.13538/j.1001-8042/nst.26.030101

  36. R. Gao, X.-X. Ye, S. Yan et al., Effects of tungsten content on the high-temperature oxidation behavior of Ni-xW-6Cr alloys. Corros. Sci. 149, 87 (2019). https://doi.org/10.1016/j.corsci.2019.01.008

    Article  Google Scholar 

  37. G. Zheng, B. Kelleher, L. He et al., High-temperature corrosion of UNS N10003 in molten Li2BeF4 (FLiBe) salt. Corrosion 71, 1257 (2015). https://doi.org/10.5006/1657

    Article  Google Scholar 

  38. G. Zheng, B. Kelleher, G. Cao et al., Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt. J. Nucl. Mater. 461, 143 (2015). https://doi.org/10.1016/j.jnucmat.2015.03.004

    Article  Google Scholar 

  39. C. Sona, B. Gajbhiye, P. Hule et al., High temperature corrosion studies in molten salt-FLiNaK. Corros. Eng., Sci. Technol. 49, 287 (2014). https://doi.org/10.1179/1743278213Y.0000000135

    Article  Google Scholar 

  40. F.-Y. Ouyang, C.-H. Chang, J.-J. Kai, Long-term corrosion behaviors of Hastelloy-N and Hastelloy-B3 in moisture-containing molten FLiNaK salt environments. J. Nucl. Mater. 446, 81 (2014). https://doi.org/10.1016/j.jnucmat.2013.11.045

    Article  Google Scholar 

  41. F.-Y. Ouyang, C.-H. Chang, B.-C. You et al., Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments. J. Nucl. Mater. 437, 201 (2013). https://doi.org/10.1016/j.jnucmat.2013.02.021

    Article  Google Scholar 

  42. L. Olson. Material corrosion in molten LiF-NaF-KF eutectic salt. University of Wisconsin-Madison, PhD Dissertation, 2009

  43. D.F. Williams, L.M. Toth, K.T. Clarno, Assessment of candidate molten salt coolants for the advanced high temperature reactor (AHTR) (Department of Energy, United States, 2006)

    Book  Google Scholar 

  44. N.S. Patel, V. Pavlík, M. Boča, High-temperature corrosion behavior of superalloys in molten salts – A review. Crit. Rev. Solid State Mater. Sci. 42, 83 (2016). https://doi.org/10.1080/10408436.2016.1243090

    Article  Google Scholar 

  45. K. Sridharan, T.R. Allen. 12 - Corrosion in Molten Salts. in: Groult FL, (Ed.). Molten Salts Chemistry. (Elsevier, Oxford, 2013). pp. 241

    Chapter  Google Scholar 

  46. T. Bauer, N. Pfleger, D. Laing et al. 20 - High-Temperature Molten Salts for Solar Power Application. in: Groult FL, (Ed.). Molten Salts Chemistry. (Elsevier, Oxford, 2013). pp. 415

  47. W. Ding, A. Bonk, T. Bauer, Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review. Frontiers of Chemical Science and Engineering 12(3), 564 (2018). https://doi.org/10.1007/s11705-018-1720-0

    Article  Google Scholar 

  48. P. Calderoni, C. Cabet. 23 - Corrosion issues in molten salt reactor (MSR) systems. in: Féron D, (Ed.). Nuclear Corrosion Science and Engineering. (Woodhead Publishing, 2012). pp. 842

  49. J.R. Keiser. Compatibility Studies of Potential Molten-Salt Breeder Reactor Materials in Molten Fluoride Salts, (Oak Ridge National Laboratory, 1977)

  50. J.W. Koger, Fluoride salt corrosion and mass transfer in high temperature dynamic systems. Corrosion 29, 115 (1973). https://doi.org/10.5006/0010-9312-29.3.115

    Article  Google Scholar 

  51. Y. Wang, H. Liu, C. Zeng, Galvanic corrosion of pure metals in molten fluorides. J. Fluor. Chem. 165, 1 (2014). https://doi.org/10.1016/j.jfluchem.2014.05.010

    Article  Google Scholar 

  52. L.C. Olson, J.W. Ambrosek, K. Sridharan et al., Materials corrosion in molten LiF-NaF-KF salt. J. Fluorine Chem. 130, 67 (2009). https://doi.org/10.1016/j.jfluchem.2008.05.008

    Article  Google Scholar 

  53. M. Liu, J. Zheng, Y. Lu et al., Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques. J. Nucl. Mater. 440, 124 (2013). https://doi.org/10.1016/j.jnucmat.2013.04.056

    Article  Google Scholar 

  54. D. Olander, Redox condition in molten fluoride salts - Definition and control. J. Nucl. Mater. 300, 270 (2002). https://doi.org/10.1016/10.1016/s0022-3115(01)00742-5

    Article  Google Scholar 

  55. D. Ingersoll, C. Forsberg, P. MacDonald, Trade Studies on the Liquid-Salt-Cooled Very High-Temperature Reactor: Fiscal Year 2006 Progress Report. ORNL/TM-2006/140, Oak Ridge National Laboratory (2007)

  56. Y. Jia, H. Cheng, J. Qiu et al., Effect of temperature on diffusion behavior of Te into nickel. J. Nucl. Mater. 441, 372 (2013). https://doi.org/10.1016/j.jnucmat.2013.06.025

    Article  Google Scholar 

  57. L. Jiang, C.-T. Fu, B. Leng et al., Influence of grain size on tellurium corrosion behaviors of GH3535 alloy. Corros. Sci. 148, 110 (2019). https://doi.org/10.1016/j.corsci.2018.12.007

    Article  Google Scholar 

  58. L. Lu, Y. Jia, X.-X. Ye et al., Local structure study of tellurium corrosion of nickel alloy by X-ray absorption spectroscopy. Corros. Sci. 108, 169 (2016). https://doi.org/10.1016/j.corsci.2016.03.006

    Article  Google Scholar 

  59. M. Luo, L. Li, F. Song et al., XAFS and SRGI-XRD studies of the local structure of tellurium corrosion of Ni-18%Cr alloy. Nucl. Sci. Tech. 30, 153 (2019). https://doi.org/10.1007/s41365-019-0673-4

    Article  Google Scholar 

  60. Z.-F. Xu, J.-S. Dong, L. Jiang et al., Effects of Si Addition and Long-Term Thermal Exposure on the Tensile Properties of a Ni–Mo–Cr Superalloy. Acta Metallurgica Sinica (English Letters) 28, 951 (2015). https://doi.org/10.1007/s40195-015-0277-x

    Article  Google Scholar 

  61. L. Jiang, X.-X. Ye, Z.-Q. Wang et al., The critical role of Si do** in enhancing the stability of M6C carbides. J Alloys Compd 728, 917 (2017). https://doi.org/10.1016/j.jallcom.2017.09.042

    Article  Google Scholar 

  62. K. Kuo, The formation of η carbides. Acta Metall. 1, 301 (1953). https://doi.org/10.1016/0001-6160(53)90103-5

    Article  Google Scholar 

  63. K. Frisk, J. Bratberg, A. Markström, Thermodynamic modelling of the M6C carbide in cemented carbides and high-speed steel. Calphad. 29, 91 (2005). https://doi.org/10.1016/j.calphad.2005.07.001

    Article  Google Scholar 

  64. Q. Wu, H. Song, R.W. Swindeman et al., Microstructure of long-term aged IN617 Ni-base superalloy. Metall. Mater. Trans. A 39, 2569 (2008). https://doi.org/10.1007/s11661-008-9618-y

    Article  Google Scholar 

  65. H. Wisell, An experimental study of carbide/austenite equilibria in the high-speed steel alloy system. Metall. Trans. A 22, 1391 (1991). https://doi.org/10.1007/BF02660671

    Article  Google Scholar 

  66. L. Dobrzański, The structure and properties of WV high-speed steels with increased content of silicon. J. Mater. Process. Tech 56, 933 (1996). https://doi.org/10.1016/0924-0136(96)85121-1

    Article  Google Scholar 

  67. S. Liu, X.-X. Ye, L. Jiang et al., Effect of tungsten content on the microstructure and tensile properties of Ni–xW–6Cr alloys. Mater. Sci. Eng., A 655, 269 (2016). https://doi.org/10.1016/j.msea.2016.01.010

    Article  Google Scholar 

  68. H. Ai, X.-X. Ye, L. Jiang et al., On the possibility of severe corrosion of a Ni-W-Cr alloy in fluoride molten salts at high temperature. Corros. Sci. 149, 218 (2019). https://doi.org/10.1016/j.corsci.2019.01.012

    Article  Google Scholar 

  69. S. Fabre, J. Finne, P. Chamelot et al., Corrosion of metallic materials for molten salt reactors. Paper Presented at Proceedings of ICAPP’09 (Tokyo,Japan)

  70. S. Espevik, R.A. Rapp, P.L. Daniel et al., Oxidation of Ni-Cr-W ternary alloys. Oxid. Met. 14, 85 (1980). https://doi.org/10.1007/bf00603987

    Article  Google Scholar 

  71. D.B. Lee, J.H. Ko, S.C. Kwon, Oxidation of Ni–W coatings at 700 and 800 °C in air. Surf. Coat. Technol. 193, 292 (2005). https://doi.org/10.1016/j.surfcoat.2004.08.151

    Article  Google Scholar 

  72. S.-J. Park, S.-M. Seo, Y.-S. Yoo et al., Statistical Study of the Effects of the Composition on the Oxidation Resistance of Ni-Based Superalloys. J Nanomater 2015, 1 (2015). https://doi.org/10.1155/2015/929546

    Article  Google Scholar 

  73. X.X. Huang, J.S. Li, R. Hu et al., Evolution of oxidation in Ni-Cr-W alloy at 1100 °C. Rare Metal Mat. Eng. 39, 1908 (2010). https://doi.org/10.1016/s1875-5372(10)60136-1

    Article  Google Scholar 

  74. K.T. Jacob, Phase relationships in the system Cr-W-O and thermodynamic properties of CrWO4 and Cr2WO6. Journal of Materials Science 15, 2167 (1980). https://doi.org/10.1007/bf00552303

    Article  Google Scholar 

  75. R. **e, J. Ilavsky, H. Huang et al., Dispersed SiC nanoparticles in Ni observed by ultra‐small‐angle X‐ray scattering. J. Appl. Crystallogr. 49, 2155 (2016). https://doi.org/10.13538/j.1001-8042/nst.26.020102

  76. X. Sun, W. Zhu, Z. Xu et al., Design of a cryo-cooled double multilayer monochromator in USAXS beamline at SSRF. Nucl. Tech. 42, 110101 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.110101(in Chinese)

  77. B. Gao, Y. Leng, H. Chen et al., Slit separation rapid scanning system for synchrotron radiation interferometer. Nucl. Tech. 41, 080101 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.080101 (in Chinese)

  78. Z. Zhao, H. Xu, P. Gong et al., Management and query system for the beamline operation data based on Archiver Appliance at SSRF. Nucl. Tech. 41, 030102 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.030102 (in Chinese)

  79. C. Hong, C. Yang, P. Zhou et al., Study on X-ray beam stabilization of BL16B1 at SSRF. Nucl. Tech. 41, 120101(2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.120101 (in Chinese)

  80. C. Qin, S. Xue, N. Wang et al., The finite element analysis of the bent elliptical cylindrical mirror. Nucl. Tech. 41, 010101 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.010101 (in Chinese)

  81. Y. Pan, C. Mao, D. Shu et al., Simulation and analysis of a high-stability flexure bending mechanism for hard X-ray submicron focusing. Nucl. Tech. 40, 090102 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.090102 (in Chinese)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to De-Jun Wang or Zhi-Jun Li.

Additional information

This work was supported by the National key research and development program of China (Nos. 2016YFB0700401 and 2016YFB0700404), Natural Science Foundation of Shanghai (Nos. 19ZR1468200 and 18ZR1448000), National Natural Science Foundation of China (Nos. 51671154, 51601213 and 51671122), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA02004210), and Youth Innovation Promotion Association, Chinese Academy of Science (No. 2019264).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Ye, XX., Wang, DJ. et al. Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys. NUCL SCI TECH 31, 6 (2020). https://doi.org/10.1007/s41365-019-0719-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0719-7

Keywords

Navigation