Log in

Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes were studied by means of first-principles calculations. The structure and stability of continuous hydrogenation in single vacancy were investigated. Several new stable structures were found, along with their corresponding energy barriers. In double-vacancy graphene, the preferred sites of H atoms were identified, and H2 molecule desorption and adsorption of from/on were calculated from the energy barriers. This work provides a systematic and comprehensive understanding of hydrogen behavior on defected graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Staffell, The energy and fuel data sheet. 2011. http://tinyurl.com/energydata

  2. P.D. Jongh, M. Allendorf, J.J. Vajo et al., Nanoconfined light metal hydrides for reversible hydrogen storage. MRS Bull. 38, 488–494 (2013). https://doi.org/10.1557/mrs.2013.108

    Article  Google Scholar 

  3. L. Pickering, J. Li, D. Reed et al., Ti–V–Mn based metal hydrides for hydrogen storage. J. Alloys Compd. 580, 233–237 (2013). https://doi.org/10.1016/j.jallcom.2013.03.208

    Article  Google Scholar 

  4. A.M. Jorge, E. Prokofiev, G.L. de Lima et al., An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing. Int. J. Hydrogen Energy 38, 8306–8312 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.158

    Article  Google Scholar 

  5. D.L. Chao, C.L. Zhong, Z.W. Ma et al., Improvement in high-temperature performance of Co-free high-Fe AB 5-type hydrogen storage alloys. Int. J. Hydrogen Energy 37, 12375–12383 (2012). https://doi.org/10.1016/j.ijhydene.2012.05.147

    Article  Google Scholar 

  6. C.N. Peng, The effects of hydrogen on the helium behavior in palladium. Nucl. Sci. Tech. 27, 106 (2016). https://doi.org/10.1007/s41365-016-0115-5

    Article  Google Scholar 

  7. W.G. Liu, Y. Qian, D.X. Zhang et al., Theoretical study of the interaction between hydrogen and 4d alloying atom in nickel. Nucl. Sci. Tech. 28, 82 (2017). https://doi.org/10.1007/s41365-017-0235-6

    Article  Google Scholar 

  8. P. Reunchan, S.H. Jhi, Metal-dispersed porous graphene for hydrogen storage. Appl. Phys. Lett. 98, 93–103 (2011). https://doi.org/10.1063/1.3560468

    Article  Google Scholar 

  9. Y. **a, Z. Yang, Y. Zhu, Porous carbon-based materials for hydrogen storage: advancement and challenges. J. Mater. Chem. A 1, 9365–9381 (2013). https://doi.org/10.1039/c3ta10583k

    Article  Google Scholar 

  10. X.K. Chen, J. Liu, Z.H. Peng et al., A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures. Appl. Phys. Lett. 110, 091907 (2017). https://doi.org/10.1063/1.4977776

    Article  Google Scholar 

  11. X.K. Chen, Z.X. **e, W.X. Zhou et al., Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction. Carbon 100, 492–500 (2016). https://doi.org/10.1016/j.carbon.2016.01.045

    Article  Google Scholar 

  12. M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011). https://doi.org/10.1039/c0ee00295j

    Article  Google Scholar 

  13. S. Patchkovskii, J.S. Tse, S.N. Yurchenko et al., Graphene nanostructures as tunable storage media for molecular hydrogen. Natl. Acad. Sci. USA 102, 10439–10444 (2005). https://doi.org/10.1073/pnas.0501030102

    Article  Google Scholar 

  14. D.W. Boukhvalov, M.I. Katsnelson, A.I. Lichtenstein, Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77, 035427 (2008). https://doi.org/10.1103/PhysRevB.77.035427

    Article  Google Scholar 

  15. D.C. Elias, R.P. Nair, T.M. Mohiuddin et al., Control of grphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009). https://doi.org/10.1126/science.1167130

    Article  Google Scholar 

  16. R. Balog, B.J. Jorgensen, L. Nilsson et al., Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mat. 9, 315–319 (2010). https://doi.org/10.1038/NMAT2710

    Article  Google Scholar 

  17. B.S. Pujari, S. Gusarov, M. Brett et al., Single-side-hydrogenated graphene: density functional theory predictions. Phys. Rev. B 84, 041402 (2011). https://doi.org/10.1103/PhysRevB.84.041402

    Article  Google Scholar 

  18. S.S. Han, H. Jung, D.H. Jung et al., Stability of hydrogenation states of graphene and conditions for hydrogen spillover. Phys. Rev. B 85, 155408 (2012). https://doi.org/10.1103/PhysRevB.85.155408

    Article  Google Scholar 

  19. W. Zhou, J. Zhou, J. Shen et al., First-principles study of high-capacity hydrogen storage on graphene with Li atoms. J. Phys. Chem. Solids 73, 245–251 (2012). https://doi.org/10.1016/j.jpcs.2011.10.035

    Article  Google Scholar 

  20. V. Tozzini, V. Pellegrini, Prospects for hydrogen storage in graphene. Phys. Chem. Chem. Phys. 15, 80–89 (2013). https://doi.org/10.1039/c2cp42538f

    Article  Google Scholar 

  21. S. Gadipelli, Z. Guo, Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater Sci. 69, 1–60 (2015). https://doi.org/10.1016/j.pmatsci.2014.10.004

    Article  Google Scholar 

  22. H. Hu, J. **n, H. Hu et al., Metal-free graphene-based catalyste-insight into the catalytic activity: a short review. Appl. Catal. A. Gen. 492, 1–9 (2015). https://doi.org/10.1016/j.apcata.2014.11.041

    Article  Google Scholar 

  23. M.L. Guillou, N. Toulhoat, Y. Pipon et al., Deuterium migration in nuclear graphite: consequences for the behavior of tritium in CO2-cooled reactors and for the decontamination of irradiated graphite waste. J. Nucl. Mater. 461, 72–77 (2015). https://doi.org/10.1016/j.jnucmat.2015.03.005

    Article  Google Scholar 

  24. T.N. Hoai, K.H. Lam, N.T. Thanh et al., Migration and desorption of hydrogen atom and molecule on/from graphene. Carbon 121, 248–256 (2017). https://doi.org/10.1016/j.carbon.2017.05.069

    Article  Google Scholar 

  25. Y. Miura, H. Kasai, W. Dino et al., First principles studies for the dissociative adsorption of H2 on graphene. J. Appl. Phys. 933, 395–400 (2003). https://doi.org/10.1063/1.1555701

    Article  Google Scholar 

  26. Z. Ao, S. Li, in Graphene Simulation, ed. by J.R. Gong (InTech, Rijeka, 2011), p. 53

  27. M. Terrones, A.R. Botello-Mendez, J. Campos-Delgado et al., Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010). https://doi.org/10.1016/j.nantod.2010.06.010

    Article  Google Scholar 

  28. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005). https://doi.org/10.1038/nature04233

    Article  Google Scholar 

  29. K. Nordlund, J. Keinonen, T. Mattila, Formation of ion irradiation induced small-scale defects on graphite surfaces. Phys. Rev. Lett. 77, 699–702 (1996). https://doi.org/10.1103/PhysRevLett.77.699

    Article  Google Scholar 

  30. A. Hashimoto, K. Suenaga, A. Gloter et al., Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004). https://doi.org/10.1038/nature02817

    Article  Google Scholar 

  31. P.O. Lehtinen, A.S. Foster, Y. Ma et al., Irradiation-induced magnetism in graphite: a density functional study. Phys. Rev. Lett. 93, 187202 (2004). https://doi.org/10.1103/PhysRevLett.93.187202

    Article  Google Scholar 

  32. O.V. Yazyev, L. Helm, Defect-induced magnetism in graphene. Phys. Rev. B 7, 125408 (2007). https://doi.org/10.1103/PhysRevB.75.125408

    Article  Google Scholar 

  33. V.M. Pereira, D.S. Lopes, N.A. Castro, Modeling disorder in graphene. Phys. Rev. B 77, 115109 (2008). https://doi.org/10.1103/PhysRevB.77.115109

    Article  Google Scholar 

  34. O.V. Yazyev, Magnetism in disordered graphene and irradiated graphite. Phys. Rev. Lett. 101, 037203 (2008). https://doi.org/10.1103/PhysRevLett.101.037203

    Article  Google Scholar 

  35. J.C. Meyer, C. Kisielowski, R. Erni et al., Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8, 3582–3586 (2008). https://doi.org/10.1021/nl801386m

    Article  Google Scholar 

  36. M.M. Ugeda, I. Brihuega, F. Guinea et al., Missing atom as a source of carbon magnetism. Phys. Rev. Lett. 104, 096804 (2010). https://doi.org/10.1103/PhysRevLett.104.096804

    Article  Google Scholar 

  37. T. Kondo, Y. Honma, J. Oh et al., Edge states propagating from a defect of graphite: scanning tunneling spectroscopy measurements. Phys. Rev. B 82, 153414 (2010). https://doi.org/10.1103/PhysRevB.82.153414

    Article  Google Scholar 

  38. B. Wen, M.S. Cao, M.M. Lu et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108

    Article  Google Scholar 

  39. M.S. Cao, X.X. Wang, W.Q. Cao et al., Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion. Small 14, 1800987–1800994 (2018). https://doi.org/10.1002/smll.201800987

    Article  Google Scholar 

  40. W.Q. Cao, X.X. Wang, J. Yuan et al., Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015). https://doi.org/10.1039/c5tc02185e

    Article  Google Scholar 

  41. W.L. Song, M.S. Cao, Z.L. Hou et al., High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94, 233110 (2009). https://doi.org/10.1063/1.3152764

    Article  Google Scholar 

  42. Y.N. Tang, Z.Y. Liu, Z.G. Shen et al., Adsorption sensitivity of metal atom decorated bilayer graphene toward toxic gas molecules (CO, NO, SO2 and HCN). Sensor. Actuat. B Chem. 238, 182–195 (2017). https://doi.org/10.1016/j.snb.2016.07.039

    Article  Google Scholar 

  43. Y.N. Tang, H.D. Chai, W.G. Chen et al., Theoretical study on geometric, electronic and catalytic performances of Fe dopant pairs in graphene. Phys. Chem. Chem. Phys. 19, 26369–26380 (2017). https://doi.org/10.1039/c7cp05683d

    Article  Google Scholar 

  44. Y.N. Tang, W.G. Chen, Z.G. Shen et al., Nitrogen coordinated silicon-doped graphene as a potential alternative metal-free catalyst for CO oxidation. Carbon 111, 448–458 (2017). https://doi.org/10.1016/j.carbon.2016.10.028

    Article  Google Scholar 

  45. Y.N. Tang, H.D. Chai, H.W. Zhang et al., Tuning the adsorption and interaction of CO and O-2 on graphene-like BC3-supported non-noble metal atoms. Phys. Chem. Chem. Phys. 20, 14040–14052 (2018). https://doi.org/10.1039/c8cp00772a

    Article  Google Scholar 

  46. Y.N. Tang, Z.G. Shen, Y.Q. Ma et al., Divacancy-nitrogen/boron-codoped graphene as a metal-free catalyst for high-efficient CO oxidation. Mater. Chem. Phys. 207, 11–22 (2018). https://doi.org/10.1016/j.matchemphys.2017.12.048

    Article  Google Scholar 

  47. L.H. Yao, W.Q. Cao, M.S. Cao et al., Do** effect on the adsorption of Na atom onto graphenes. Curr. Appl. Phys. 16, 574–580 (2016). https://doi.org/10.1016/j.cap.2016.03.001

    Article  Google Scholar 

  48. C. Marina, C. Simone, F.T. Gian et al., Structure and stability of hydrogenated carbon atom vacancies in graphene. Carbon 77, 165–174 (2014). https://doi.org/10.1016/j.carbon.2014.05.018

    Article  Google Scholar 

  49. K. Yamashita, M. Saito, T. Oda, Atomic geometry and stability of mono-, di-, and trivacancies in graphene. Jpn. J. Appl. Phys. 45, 6534–6536 (2006). https://doi.org/10.1143/JJAP.45.6534

    Article  Google Scholar 

  50. A.A. El-Barbary, R.H. Telling, C.P. Ewels et al., Structure and energetics of the vacancy in graphite. Phys. Rev. B 68, 144107 (2003). https://doi.org/10.1103/PhysRevB.68.144107

    Article  Google Scholar 

  51. A.V. Krasheninnikov, P.O. Lehtinen, A.S. Foster et al., Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chem. Phys. Lett. 418, 132–147 (2006). https://doi.org/10.1016/j.cplett.2005.10.106

    Article  Google Scholar 

  52. D.Q. **a, C.L. Ren, W. Zhang et al., Theoretical study of the interaction between metallic fission products and defective graphite. Comput. Mater. Sci. 106, 129–134 (2015). https://doi.org/10.1016/j.commatsci.2015.04.029

    Article  Google Scholar 

  53. Y. Lei, A.S. Stephen, W.G. Zhu et al., Hydrogen-induced magnetization and tunable hydrogen storage in graphitic structures. Phys. Rev. B 77, 134114 (2008). https://doi.org/10.1103/PhysRevB.77.134114

    Article  Google Scholar 

  54. Q.G. Jiang, Z.M. Ao, W.T. Zheng et al., Enhanced hydrogen sensing properties of graphene by introducing a mono-atom-vacancy. Phys. Chem. Chem. Phys. 15, 21016–21022 (2013). https://doi.org/10.1039/c3cp52976b

    Article  Google Scholar 

  55. G.K. Sunnardianto, I. Maruyama, K. Kusakabe, Dissociation-chemisorption pathways of H2 molecule on graphene activated by a hydrogenated mono-vacancy V11. Adv. Sci. Eng. Med. 8, 421–426 (2016). https://doi.org/10.1166/asem.2016.1875

    Article  Google Scholar 

  56. G.K. Sunnardianto, I. Maruyama, K. Kusakabe, Storing-hydrogen processes on graphene activated by atomic-vacancies. Int. J. Hydrogen Energy 42, 23691–23697 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.115

    Article  Google Scholar 

  57. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  MathSciNet  Google Scholar 

  58. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. B 140, 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  MathSciNet  Google Scholar 

  59. G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  60. J.P. Perdew, J.A. Chevary, S.H. Vosko et al., Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992). https://doi.org/10.1103/PhysRevB.46.6671

    Article  Google Scholar 

  61. P.E. Blochl, Projector Augmented-Wave Method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  62. G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). https://doi.org/10.1063/1.1329672

    Article  Google Scholar 

  63. G. Henkelman, H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). https://doi.org/10.1063/1.1323224

    Article  Google Scholar 

  64. C. Li, C. Fang, C. Yang, First-principle studies of radioactive fission productions Cs/Sr/Ag/I adsorption on chrome–molybdenum steel in Chinese 200 MW HTR-PM. Nucl. Sci. Technol. 28, 79–88 (2017). https://doi.org/10.1007/s41365-017-0241-8

    Article  Google Scholar 

  65. V. Morón, P. Gamallo, R. Sayós, DFT and kinetics study of O/O2 mixturesreacting over a graphite (0001) basal surface. Theor. Chem. Acc. 128, 683–694 (2011). https://doi.org/10.1007/s00214-010-0798-3

    Article  Google Scholar 

  66. J. Fayos, Possible 3D carbon structures as progressive intermediates ingraphite to diamond phase transition. J. Solid State Chem. 148, 278–285 (1999). https://doi.org/10.1006/jssc.1999.8448

    Article  Google Scholar 

  67. X.W. Sha, B. Jackson, First-principles study of the structural and energetic properties of H atoms on a graphite (0001) surface. Surf. Sci. 496, 318–330 (2002). https://doi.org/10.1016/S0039-6028(01)01602-8

    Article  Google Scholar 

  68. D.W. Boukhvalov, M.I. Katsnelson, A.I. Lichtenstein, Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77, 035427 (2008). https://doi.org/10.1103/PhysRevB.77.035427

    Article  Google Scholar 

  69. Y. Miura, H. Kasai, W. Dino et al., First principles studies for the disociative adsorption of H2 on graphene. J. Appl. Phys. 93, 3395–3400 (2003). https://doi.org/10.1063/1.1555701

    Article  Google Scholar 

  70. P.O. Lethinen, A.S. Foster, Y. Ma et al., Irradiation induced magnetism in graphene: a density functional study. Phys. Rev. Lett. 93, 187202 (2004). https://doi.org/10.1103/PhysRevLett.93.187202

    Article  Google Scholar 

  71. O.V. Yazyev, L. Helm, Defect induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007). https://doi.org/10.1103/PhysRevB.75.125408

    Article  Google Scholar 

  72. M.W.C. Dharma-Wardana, M.Z. Zgierski, Magnetism and structure at vacant lattice sites in graphene. Phys. E 41, 80–83 (2008). https://doi.org/10.1016/j.physe.2008.06.007

    Article  Google Scholar 

  73. X.Q. Dai, J.H. Zhao, M.H. **e et al., First-principle study on magnetism induced by Vacanies in graphene. Eur. Phys. J. B 80, 343–351 (2011). https://doi.org/10.1140/epjb/e2011-10955-x

    Article  Google Scholar 

  74. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural Defects in Graphene. ACS Nano 5, 26–41 (2011). https://doi.org/10.1021/nn102598m

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Guan Liu or Sheng-Wei Wu.

Additional information

This work is supported by the National Natural Science Foundation of China (Grant No. 51601212; 11475082) and “Strategic Priority Research Program of Chinese Academy of Sciences” Thorium Molten Salts Reactor Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XJ., Fei, ZJ., Liu, WG. et al. Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes. NUCL SCI TECH 30, 69 (2019). https://doi.org/10.1007/s41365-019-0584-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0584-4

Keywords

Navigation